« »

... >>

РАБОЧАЯ ПРОГРАММА УЧЕБНОЙ ДИСЦИПЛИНЫ Электродинамика сверхвысоких частот

: 03.03.02 , :

: 3, : 5

-	,	
		5
1 ()	7
2		252
3	, .	107
4	, .	54
5	, .	36
6	, .	0
7	, .	0
8	, .	2
9	, .	15
10	, .	145
11	, , ,	
12		

. .

·		1.1
Компетенция ФГОС: ОПК.2 способность использовать в профессионально знания фундаментальных разделов математики, создавать математически профессиональных задач и интерпретировать полученные результаты с у моделей; в части следующих результатов обучения:	ие модели типовы	базовые
1.		
Компетенция ФГОС: ОПК.З способность использовать базовые теоретиче фундаментальных разделов общей и теоретической физики для решения г части следующих результатов обучения: 3.		х задач; в
Value and the AFOC. OHV 1 are as for a six and a second a		
Компетенция ФГОС: ОПК.4 способность понимать сущность и значение и современного общества, осознавать опасность и угрозу, возникающие в эт основные требования информационной безопасности; в части следующих р	ом процессе, собл	юдать
1. ,		
2. Компетенция ФГОС: ПК.1 способность использовать специализированны	д энания в абласт	м физики ппа
освоения профильных физических дисциплин; в части следующих результ		и физики дли
9.		
2.		
		2.1
(
, , ,)		
	I .	
.1. 9		
1.Знать базовые методы решения прикладных задач в области	:	:
электродинамики СВЧ	,	
.2. 1		
2.Иметь представление о различных типах направляющих структур,	Γ .	
применяемых в технике СВЧ	;	,
.3. 3		
	T	
3.3 нать уравнения Максвелла в интегральной, дифференциальной и комплексной формах; граничные условия для векторов поля; теорему Умова-Пойнтинга в интегральной, дифференциальной и комплексной формах; выражения векторов поля через электродинамические потенциалы;	;	;
4.Знать волновые уравнения Даламбера для потенциалов, условия калибровок Кулона и Лоренца; волновые уравнения для векторов поля; формулы для расчета критической длины волны и длины волны в направляющих структурах; формулы для расчета фазовой и групповой скорости в направляющих структурах;	;	;
5.Знать формулы волновых сопротивлений (ZPI, ZPU, ZUI) прямоугольного волновода для главного типа волны; формулы для расчета резонансной частоты мод Е- и Н-типов в прямоугольном и цилиндрическом резонаторах; формулы для расчета глубины скин-слоя и поверхностного сопротивления металла;	;	;
6.Знать определения собственной, нагруженной и внешней добротностей резонатора; выражение собственной добротности резонатора через интегралы магнитного поля; определение коэффициента связи резонатора с линией передачи; определение коэффициента пролета	;	;
	l .	

.4. 1 ,		
7.Знать телеграфные уравнения для токов и напряжений в длинной линии; выражения волнового сопротивления и постоянной распространения длинной линии через погонные параметры линии; формулы для расчета погонных емкости и индуктивности, волнового сопротивления коаксиальной линии; определения коэффициентов отражения, стоячей волны; связь между ними; формулы для расчета входного сопротивления нагруженного отрезка длинной линии с потерями и без потерь;	;	;
.4. 2		
8. Уметь рассчитывать параметры и режимы работы длинных линий передачи	;	;
9. Уметь рассчитывать параметры и режимы работы прямоугольных и круглых волноводов	;	;
10. Уметь рассчитывать параметры и режимы работы объемных резонаторов	;	
11. Иметь опыт расчета и построения картины электромагнитного поля в прямоугольных и круглых волноводах и резонаторах	;	;

		ı	
	, .		
:5	,		
:			
1.			
· · · · · · · · · · · · · · · · · · ·	0	2	2, 3
2	0	2	2, 3
2	0	6	2, 3, 4
3.	0	4	2, 3
5	0	6	2, 7, 8

6.	0	6	2, 7, 8
7	0	4	1, 2, 7, 8
8 (, ,). ,	0	6	11, 2, 4, 5, 9
9	0	6	11, 2, 5, 9
10.	0	6	10, 2, 6, 7
11 ,	0	6	10, 11, 2, 5, 6

	, .			
:5	•	ľ		
:				
1.	0	2	2, 5, 7	
2.	0	2	2, 3	·
3.	0	2	2, 3	
4.	0	2	2, 3, 7, 8	
5.	0	4	2, 3, 7, 8	·
6.	0	4	2, 3, 7, 8	·

7.	0	4	2, 3, 7, 8	
8.	0	2	2, 3, 7, 8	
9.	0	2	2, 3, 7, 8	
10.	0	2	2, 4, 5	
11. 10	0	2	11, 2, 4, 5, 9	
12.	0	2	1, 11, 2, 4, 5, 9	
13.	0	2	1, 11, 2, 4, 5, 9	
14.	0	2	11, 2, 4, 5, 9	
15.	0	2	1, 11, 2, 4, 5, 6,	

	:5			
1		1, 11, 2	121	13
:		:		
	- /,	;		
	, 1999 17 .: : htt	p://www.library.nstu	.ru/fulltext/1	999/1152/1.doc
			/ .	. ,
	;	•		
		1, 10, 11, 2, 3,		
2		4, 5, 6, 7, 8, 9	24	2
.				
1.	• •	•		
	- /,	;		
ľ	- /,	.; tp://www.library.nstu		 999/1152/1.doc
·	- /,	tp://www.library.nstu		

		- T	, (. 5.1).
		-		
	6.			
(),		. 6.1.	- 15- I	ECTS.
				6.1
	:5			
	тельная учебная деят	2льность:		
	ческие занятия:		60	
Экзамен	<i>I</i> :		40	
	6.2			
		•		6.2
.2	1.			+
.3	3.	,		+
.4	1. ,			+
	2.			+
.1	9.			+
			1	'

- 1. Кузовкин В. А. Теоретическая электротехника: учебник для вузов по направлениям "Технология, оборудование и автоматизация машиностроительных производств", "Автоматизация и управление" и специальностям "Технология машиностроения", "Металлорежущие станки и инструменты", "Автоматизация технологических процессов и производств" / В. А. Кузовкин. М., 2006. 479 с.: ил.. Библиогр.: с. 478-479.
- **1.** Говорков В. А. Электрические и магнитные поля : [учебное пособие] / В. А. Говорков. М. ;, 1960. 460 с. : ил.
- **2.** Никольский В. В. Электродинамика и распространение радиоволн: учебное пособие для радиотехнических специальностей вузов / В. В. Никольский. М., 1989. 543 с.: ил.
- **3.** Лебедев И. В. Техника и приборы СВЧ. Т. П. Электровакуумные приборы СВЧ: Учебник по спец. "Электрон. приборы" / И. В. Лебедев; Под ред. Н. Д. Девяткова. М., 1972. 375 с.
- 1. GEC HITY: http://elibrary.nstu.ru/
- 2. ЭБС «Издательство Лань»: https://e.lanbook.com/
- **3. GEOMETRY** 3. **GEOMETRY** 3. **GEOMETRY**
- 4. 9EC "Znanium.com": http://znanium.com/

5. :

8.

8.1

- **1.** Шехтман И. А. Задачи по теории электромагнитного поля: учебное пособие для физико-технического факультета / Шехтман И. А., Шемелин В. Д.; Новосиб. гос. техн ун-т. Новосибирск, 1999. 17 с.: ил.. Режим доступа: http://www.library.nstu.ru/fulltext/1999/1152/1.doc
- **2.** Никольский В. В. Электродинамика и распространение радиоволн : [учебное пособие для радиотехнических специальностей вузов] / В. В. Никольский, Т. И. Никольская. М., 2011. 542 с. : ил., табл.
- **3.** Батыгин В. В. Сборник задач по электродинамике : Учебное пособие для вузов / В. В. Батыгин, И. Н. Топтыгин; Под ред. М. М. Бредова. М., 1970. 503 с.

8.2

- 1 Microsoft Office
- 2 Microsoft Office
- 3 Microsoft Windows

	1			
		-	, ,	
L)		

Федеральное государственное бюджетное образовательное учреждение высшего образования «Новосибирский государственный технический университет»

Кафедра электрофизических установок и ускорителей

	"УТВЕРЖДАЮ"
	ДЕКАН ФТФ
	к.ф-м.н., доцент И.И. Корель
_	г.

ФОНД ОЦЕНОЧНЫХ СРЕДСТВ

УЧЕБНОЙ ДИСЦИПЛИНЫ

Электродинамика сверхвысоких частот

Образовательная программа: 03.03.02 Физика, профиль: Ядерная физика и ядерные технологии

1. **Обобщенная структура фонда оценочных средств учебной дисциплины** Обобщенная структура фонда оценочных средств по д**исциплине** Электродинамика сверхвысоких частот приведена в Таблице.

Таблица

			Этапы оцен	ки компетенций
Формируемые компетенции	Показатели сформированности компетенций (знания, умения, навыки)	Темы	Мероприятия текущего контроля (курсовой проект, РГЗ(Р) и др.)	Промежуточная аттестация (экзамен, зачет)
	у1. уметь	Вектора электромагнитного		Экзамен, вопросы 1-
использовать в	использовать	поля. Материальные		10.
профессиональной	математический	уравнения. Система		
деятельности базовые знания	аппарат для освоения	уравнений Максвелла в дифференциальной и		
фундаментальных	теоретических	интегральной формах для		
разделов	основ и	неподвижных сред.		
математики,	практического	Физический смысл		
создавать	использования	уравнений: обобщенный		
математические	физических методов			
модели типовых		электромагнитной индукции,		
профессиональных		отсутствие в природе		
задач и		магнитных зарядов, теорема		
интерпретировать		Гаусса. Волноводные		
полученные		резонаторы. Параметры		
результаты с		резонатора. Резонатор,		
учетом границ		образованный закороченным		
применимости моделей		отрезком прямоугольного волновода. Резонатор,		
моделеи		образованный закороченным		
		отрезком круглого волновода.		
		Волны в продольно-		
		однородных направляющих		
		структурах. Типы волн (ТЕ,		
		ТМ, ТЕМ). Критические		
		частота, длина волны,		
		волновое число. ТЕ и ТМ		
		волны в прямоугольном		
		волноводе. Главный тип		
		волны. Высшие типы волн. Входное сопротивление		
		нагруженного отрезка		
		длинной линии без потерь.		
		Коэффициент отражения.		
		Коэффициент стоячей волны.		
		Векторная диаграмма токов и		
		напряжений в различных		
		сечениях линии. Круговая		
		диаграмма полных		
		сопротивлений - диаграмма		
		Смита. Гармоническое переменное электромагнитное		
		поле. Система уравнений		
		Максвелла в комплексной		
		форме. Комплексные		
		электродинамические		
		потенциалы. Волновые		
		уравнения Даламбера для		
		потенциалов в комплексной		
		форме. Уравнения		
		Гельмгольца для векторов		
		поля. Баланс энергии		
		гармонического		

		1		
		электромагнитного поля.		
		Теорема Умова-Пойнтинга в		
		комплексной форме.		
		Граничные условия для		
		векторов электромагнитного		
		поля. Баланс энергии		
		электромагнитного поля.		
		Вектор Пойнтинга. Теорема		
		Умова-Пойнтинга.		
		Переменное		
		электромагнитное поле.		
		Электродинамические		
		потенциалы. Волновые		
		уравнения Даламбера для		
		потенциалов. Калибровка		
		Лоренца. Граничные условия		
		для векторов поля и		
		потенциалов. Продольно-		
		однородные длинные линии		
		передачи - эквивалентное		
		представление		
		сосредоточенными		
		элементами. Телеграфные		
		уравнения. Решение		
		телеграфных уравнений в		
		виде суперпозиции бегущих		
		волн. Постоянная		
		распространения и		
		характеристическое		
		сопротивление. Расчет		
		погонных параметров		
		продольно-однородных		
		длинных линий передачи.		
		Линии передачи с малыми		
		потерями. Резонатор как		
		отрезок длинной линии.		
		_		
		Параметры резонатора.		
		Соотношение между		
		собственной и нагруженной		
		добротностями.		
		Четвертьволновой и		
		полуволновой резонаторы.		
		Резонатор, укороченный		
		емкостью. Скин-эффект.		
		Граничное условие		
		Леонтовича. Потери		
		мощности в стенках		
		прямоугольного волновода		
		для главного типа волны.		
ОПК.3 способность	з3. знать основные	Вектора электромагнитного		Экзамен, вопросы 1-
использовать	законы физики,	поля. Материальные		10.
базовые	являющиеся	уравнения. Система		. = - •
теоретические	базовыми для	уравнений Максвелла в		
знания	решения задач	дифференциальной и		
фундаментальных	профессиональной	интегральной формах для		
1.0				
разделов общей и	деятельности	неподвижных сред.		
теоретической		Физический смысл		
физики для		уравнений: обобщенный		
решения		закон полного тока, закон		
профессиональных		электромагнитной индукции,		
задач		отсутствие в природе		
		магнитных зарядов, теорема		
		Гаусса. Волноводные		
		резонаторы. Параметры		
		резонатора. Резонатор,		
		образованный закороченным		
		отрезком прямоугольного		
		волновода. Резонатор,		
	•		•	

		· · · · · · · · · · · · · · · · · · ·	
		образованный закороченным	
		отрезком круглого волновода.	
		Волны в продольно-	
		однородных направляющих	
		структурах. Типы волн (ТЕ,	
		ТМ, ТЕМ). Критические	
		частота, длина волны,	
		волновое число. ТЕ и ТМ	
		волны в прямоугольном	
		волноводе. Главный тип	
		волны. Высшие типы волн.	
		Гармоническое переменное	
		электромагнитное поле.	
		Система уравнений	
		Максвелла в комплексной	
		форме. Комплексные	
		электродинамические	
		потенциалы. Волновые	
		уравнения Даламбера для	
		потенциалов в комплексной	
		· ·	
		форме. Уравнения	
		Гельмгольца для векторов	
		поля. Баланс энергии	
		гармонического	
		электромагнитного поля.	
		Теорема Умова-Пойнтинга в	
		комплексной форме.	
		Граничные условия для	
		векторов электромагнитного	
		поля. Баланс энергии	
		электромагнитного поля.	
		Вектор Пойнтинга. Теорема	
		Умова-Пойнтинга.	
		Переменное	
		электромагнитное поле.	
		Электродинамические	
		потенциалы. Волновые	
		уравнения Даламбера для	
		потенциалов. Калибровка	
		Лоренца. Граничные условия	
		для векторов поля и	
		потенциалов. Резонатор как	
		отрезок длинной линии.	
		Параметры резонатора.	
		Соотношение между	
		собственной и нагруженной	
		добротностями.	
		Четвертьволновой и	
		полуволновой резонаторы.	
		Резонатор, укороченный	
		емкостью. Скин-эффект.	
		Граничное условие	
		Леонтовича. Потери	
		мощности в стенках	
		прямоугольного волновода	
		для главного типа волны.	
ОПК.4 способность	у1. уметь понимать,	Входное сопротивление	Экзамен, вопросы 6-
понимать сущность	излагать и	нагруженного отрезка	10.
и значение	критически	длинной линии без потерь.	
информации в	анализировать	Коэффициент отражения.	
развитии	базовую	Коэффициент стоячей волны.	
-	общефизическую	Векторная диаграмма токов и	
современного	_		
общества,	информацию	напряжений в различных	
осознавать		сечениях линии. Круговая	
опасность и угрозу,		диаграмма полных	
возникающие в		сопротивлений - диаграмма	
этом процессе,		Смита. Продольно-	
соблюдать		однородные длинные линии	

	1	T		
основные		передачи - эквивалентное		
требования		представление		
информационной		сосредоточенными		
безопасности		элементами. Телеграфные уравнения. Решение		
		телеграфных уравнений в		
		виде суперпозиции бегущих		
		волн. Постоянная		
		распространения и		
		характеристическое		
		сопротивление. Расчет		
		погонных параметров		
		продольно-однородных		
		длинных линий передачи.		
		Линии передачи с малыми		
		потерями. Резонатор как		
		отрезок длинной линии.		
		Параметры резонатора.		
		Соотношение между		
		собственной и нагруженной		
		добротностями.		
		Четвертьволновой и		
		полуволновой резонаторы.		
		Резонатор, укороченный		
OTIL 4	-2	емкостью.		D
ОПК.4	у2. уметь	Волноводные резонаторы.		Экзамен, вопросы 4-
	использовать	Параметры резонатора. Резонатор, образованный		8.
	информационные технологии для	закороченным отрезком		
	решения	прямоугольного волновода.		
	физических задач	Резонатор, образованный		
	физи песких зада т	закороченным отрезком		
		круглого волновода. Волны в		
		продольно-однородных		
		направляющих структурах.		
		Типы волн (ТЕ, ТМ, ТЕМ).		
		Критические частота, длина		
		волны, волновое число. ТЕ и		
		ТМ волны в прямоугольном		
		волноводе. Главный тип		
		волны. Высшие типы волн.		
		Входное сопротивление		
		нагруженного отрезка		
		длинной линии без потерь.		
		Коэффициент отражения.		
		Коэффициент стоячей волны. Векторная диаграмма токов и		
		напряжений в различных		
		сечениях линии. Круговая		
		диаграмма полных		
		сопротивлений - диаграмма		
		Смита. Продольно-		
		однородные длинные линии		
		передачи - эквивалентное		
		представление		
		сосредоточенными		
		элементами. Телеграфные		
		уравнения. Решение		
		телеграфных уравнений в		
		виде суперпозиции бегущих		
		волн. Постоянная		
		распространения и		
		характеристическое		
		сопротивление. Расчет		
		погонных параметров		
		продольно-однородных длинных линий передачи.		
		Линии передачи с малыми		
L	_L	этини передали с малыми	<u> </u>	l .

		потерями. Резонатор как	
		отрезок длинной линии.	
		Параметры резонатора.	
		Соотношение между	
		собственной и нагруженной	
		добротностями.	
		Четвертьволновой и	
		полуволновой резонаторы.	
		Резонатор, укороченный	
		емкостью. Скин-эффект.	
		Граничное условие	
		Леонтовича. Потери	
		мощности в стенках	
		прямоугольного волновода	
		для главного типа волны.	
ПК.1/НИ	39. знать о методах	Построение картин	Экзамен, вопрос 10
способность	решения	электромагнитного поля в	, 1
использовать	прикладных задач	круглом волноводе для ТЕ и	
специализированны	электродинамики	ТМ волн высших типов.	
е знания в области	СВЧ	Построение картин	
физики для		электромагнитного поля в	
освоения		прямоугольном волноводе для	
профильных		ТЕ волн высших типов.	
физических		Построение картин	
дисциплин		электромагнитного поля в	
		прямоугольном волноводе для	
		ТМ волн высших типов.	
		Расчет погонных параметров	
		продольно-однородных	
		длинных линий передачи.	
		Линии передачи с малыми	
		потерями.	

2. Методика оценки этапов формирования компетенций в рамках дисциплины.

Промежуточная аттестация по **дисциплине** проводится в 5 семестре - в форме экзамена, который направлен на оценку сформированности компетенций ОПК.2, ОПК.3, ОПК.4, ПК.1/НИ.

Экзамен проводится в письменной форме, по тестам.

Кроме того, сформированность компетенций проверяется при проведении мероприятий текущего контроля, указанных в таблице раздела 1.

Общие правила выставления оценки по дисциплине определяются балльно-рейтинговой системой, приведенной в рабочей программе учебной дисциплины.

На основании приведенных далее критериев можно сделать общий вывод о сформированности компетенций ОПК.2, ОПК.3, ОПК.4, ПК.1/НИ, за которые отвечает дисциплина, на разных уровнях.

Общая характеристика уровней освоения компетенций.

Ниже порогового. Уровень выполнения работ не отвечает большинству основных требований, теоретическое содержание курса освоено частично, пробелы могут носить существенный характер, необходимые практические навыки работы с освоенным материалом сформированы не достаточно, большинство предусмотренных программой обучения учебных заданий не выполнены или выполнены с существенными ошибками.

Пороговый. Уровень выполнения работ отвечает большинству основных требований, теоретическое содержание курса освоено частично, но пробелы не носят существенного характера, необходимые практические навыки работы с освоенным материалом в основном сформированы, большинство предусмотренных программой обучения учебных заданий выполнено, некоторые виды заданий выполнены с ошибками.

Базовый. Уровень выполнения работ отвечает всем основным требованиям, теоретическое содержание курса освоено полностью, без пробелов, некоторые практические навыки работы с освоенным материалом сформированы недостаточно, все предусмотренные программой обучения учебные задания выполнены, качество выполнения ни одного из них не оценено минимальным числом баллов, некоторые из выполненных заданий, возможно, содержат ошибки.

Продвинутый. Уровень выполнения работ отвечает всем требованиям, теоретическое содержание курса освоено полностью, без пробелов, необходимые практические навыки работы с освоенным материалом сформированы, все предусмотренные программой обучения учебные задания выполнены, качество их выполнения оценено числом баллов, близким к максимальному.

Федеральное государственное бюджетное образовательное учреждение высшего образования «Новосибирский государственный технический университет» Кафедра электрофизических установок и ускорителей

Паспорт экзамена

по дисциплине «Электродинамика сверхвысоких частот», 5 семестр

1. Методика оценки

Экзамен проводится в письменной форме, по тестам. Тест включает в себя 10 вопросов с вариантами ответа. Также преподаватель вправе задать студенту любой вопрос из общего перечня – Π . 4.

Форма экзаменационного теста

	Вопрос	Bap	ианты ответа	
	Записать систему уравнений Максвелла в дифференциальной форме.	a)	$rot\vec{H} = \vec{J} + \frac{\partial \vec{D}}{\partial t}$ $rot\vec{E} = -\frac{\partial \vec{B}}{\partial t}$	$div\vec{D} = \rho$ $div\vec{B} = 0$
1		б)	$rot\vec{H} = \vec{J} + \frac{\partial \vec{D}}{\partial t}$ $rot\vec{E} = -\frac{\partial \vec{B}}{\partial t}$	$div\vec{D} = 0$ $div\vec{B} = 0$
			$rot\vec{H} = \vec{J} + \frac{\partial \vec{D}}{\partial t}$ $rot\vec{E} = \frac{\partial \vec{B}}{\partial t}$	$div\vec{D} = \rho$ $div\vec{B} = 0$
			$C_1 = 2\pi\varepsilon\varepsilon_0 \ln \frac{r_2}{r_1}$	
2	Записать выражение для погонной емкости коаксиальной линии (радиусы проводников r_1 и r_2 , заполнение — диэлектрик с проницаемостью ε).	б)	$C_{1} = 2\pi\varepsilon\varepsilon_{0} \ln \frac{r_{2}}{r_{1}}$ $C_{1} = \frac{2\pi\varepsilon\varepsilon_{0}}{\ln \frac{r_{2}}{r_{1}}}$	
	пропициемостью бу.		$C_1 = 2\pi\varepsilon\varepsilon_0 \frac{r_2}{r_1}$	
3	Записать закон сохранения энергии электромагнитного поля (теорема Умова-Пойнтинга) в интегральной форме.		$\iint_{S} \vec{\Pi} d\vec{S} + \frac{dW}{dt} + P = 0$	
3			$\iint_{S} \vec{\Pi} d\vec{S} - \frac{dW}{dt} - P = 0$	

			$\iint \vec{\Pi} d\vec{S} + W + P = 0$
		B)	$\int_{S} II ds + W + I = 0$
	Чему равна напряженность поля на полюсе	<u>а)</u> б)	E_0 / a
4	металлического шара радиусом а при		$2E_0$
	внесении его в однородное электростатическое поле напряженностью E_0 ?	в)	$3E_0$
		a)	$\dot{K}_z = -j\sqrt{\dot{Z}_1\dot{Y}_1}$
5	Записать выражение для постоянной распространения длинной линии через ее	б)	$\dot{K}_z = \sqrt{\dot{Z}_1 \dot{Y}_1}$
	погонные сопротивление и проводимость.	в)	$\dot{K}_z = \sqrt{\frac{\dot{Z}_1}{\dot{Y}_1}}$
		a)	$KCBH = \frac{1}{\left \dot{\Gamma}_{H}\right }$
6	Записать формулу, связывающую КСВН и коэффициент отражения нагрузки.	б)	$KCBH = \frac{1 + \left \dot{\Gamma}_H \right }{1 - \left \dot{\Gamma}_H \right }$
		в)	$KCBH = 1 + \left \dot{\Gamma}_H\right ^2$
	Записать формулу для вычисления волнового сопротивления согласующего	a)	$Z_T = \sqrt{Z_0 R_H}$ $Z_T = \sqrt{Z_0 / R_H}$
7	четвертьволнового трансформатора по	б)	$Z_T = \sqrt{Z_0 / R_H}$
	сопротивлению нагрузки и волновому сопротивлению линии.	в)	$Z_T = \sqrt{Z_0^2 + R_H^2}$
	Записать выражение для длины волны в волноводе через критическую длину волны и длину волны в свободном пространстве.	a)	$\Lambda = \frac{\lambda / \lambda_{\kappa p}}{\sqrt{1 - \left(\lambda / \lambda_{\kappa p}\right)^2}}$
8		б)	$\Lambda = \frac{\lambda}{\sqrt{1 - \left(\lambda / 2\lambda_{\kappa p}\right)^2}}$
		в)	$\Lambda = \frac{\lambda}{\sqrt{1 - \left(\lambda / \lambda_{\kappa p}\right)^2}}$
		a)	$\delta = \sqrt{\frac{1}{\omega \sigma \mu \mu_0}}$
9	Записать формулу для расчета глубины скинслоя в металле.	б)	$\delta = \sqrt{\frac{2}{\omega \sigma \mu \mu_0}}$
			$\delta = \sqrt{\frac{\sigma}{2\omega\mu\mu_0}}$
10	Записать выражение для вычисления резонансной частоты моды E_{010} цилиндрического резонатора (радиусом a и длиной L).	a)	$\omega_0 = \frac{c \mathcal{V}_{01}}{a}$, где \mathcal{V}_{01} – первый 0 функции Бесселя 0-го порядка
		б)	$\omega_0 = \frac{c \nu_{01}}{a + L}$, где ν_{01} – первый 0 функции Бесселя 0-го
		1	порядка

		в)	$\omega_0 = \frac{c \nu_{01}}{2a + L}$, где ν_{01} — первый 0 функции Бесселя 0-го порядка
--	--	----	---

2. Критерии оценки

- Ответ на экзаменационный билет считается **неудовлетворительным**, если студент ответил верно на 4 и менее вопросов теста, оценка составляет *от* 0 до 10 баллов.
- Ответ на экзаменационный билет засчитывается на **пороговом** уровне, если студент верно ответил на 5 6 вопросов теста, оценка составляет *om 11 до 20 баллов*.
- Ответ на экзаменационный билет засчитывается на **базовом** уровне, если студент верно ответил на 7 8 вопросов теста, оценка составляет *от* 21 до 30 баллов.
- Ответ на экзаменационный билет засчитывается на **продвинутом** уровне, если студент верно ответил на 9 -10 вопросов теста, оценка составляет от 31 до 40 *баллов*.

3. Шкала оценки

В ходе семестра студенты решают задачи по предмету. Сдача данных задач является допуском к экзамену.

В общей оценке по дисциплине экзаменационные баллы учитываются в соответствии с правилами балльно-рейтинговой системы, приведенными в рабочей программе дисциплины.

4. Вопросы к экзамену по дисциплине «Электродинамика сверхвысоких частот»

	Вопрос	Bap	рианты ответа
			$rot\vec{H} = \vec{J} + \frac{\partial \vec{D}}{\partial t} \qquad div\vec{D} = \rho$ $rot\vec{E} = -\frac{\partial \vec{B}}{\partial t} \qquad div\vec{B} = 0$
1	Записать систему уравнений Максвелла в дифференциальной форме.	б)	$rot\vec{H} = \vec{J} + \frac{\partial \vec{D}}{\partial t} \qquad div\vec{D} = 0$ $rot\vec{E} = -\frac{\partial \vec{B}}{\partial t} \qquad div\vec{B} = 0$
		в)	$rot\vec{H} = \vec{J} + \frac{\partial \vec{D}}{\partial t} \qquad div\vec{D} = \rho$ $rot\vec{E} = \frac{\partial \vec{B}}{\partial t} \qquad div\vec{B} = 0$
			$C_1 = 2\pi\varepsilon\varepsilon_0 \ln \frac{r_2}{r_1}$
2	Записать выражение для погонной емкости коаксиальной линии (радиусы проводников r_1 и r_2 , заполнение — диэлектрик с проницаемостью ε).	б)	$C_{1} = 2\pi\varepsilon\varepsilon_{0} \ln \frac{r_{2}}{r_{1}}$ $C_{1} = \frac{2\pi\varepsilon\varepsilon_{0}}{\ln \frac{r_{2}}{r_{1}}}$
	проницаемостью г).		$C_1 = 2\pi\varepsilon\varepsilon_0 \frac{r_2}{r_1}$

			$\epsilon \rightarrow AW$
		a)	$\iint_{S} \vec{\Pi} d\vec{S} + \frac{dW}{dt} + P = 0$
3	Записать закон сохранения энергии электромагнитного поля (теорема Умова-Пойнтинга) в интегральной форме.	б)	$\iint_{S} \vec{\Pi} d\vec{S} - \frac{dW}{dt} - P = 0$ $\iint_{S} \vec{\Pi} d\vec{S} + W + P = 0$
		в)	$\iint_{S} \vec{\Pi} d\vec{S} + W + P = 0$
	Чему равна напряженность поля на полюсе	a)	E_0 / a
4	металлического шара радиусом а при	б)	$2E_0$
	внесении его в однородное электростатическое поле напряженностью E_0 ?	в)	$3E_0$
		a)	$\dot{K}_z = -j\sqrt{\dot{Z}_1\dot{Y}_1}$
5	Записать выражение для постоянной распространения длинной линии через ее	б)	$\dot{K}_z = \sqrt{\dot{Z}_1 \dot{Y}_1}$
	погонные сопротивление и проводимость.	в)	$\dot{K}_z = \sqrt{\frac{\dot{Z}_1}{\dot{Y}_1}}$
		a)	$KCBH = \frac{1}{\left \dot{\Gamma}_{H}\right }$
6	Записать формулу, связывающую КСВН и коэффициент отражения нагрузки.	б)	$KCBH = \frac{1 + \left \dot{\Gamma}_{H}\right }{1 - \left \dot{\Gamma}_{H}\right }$
		в)	$KCBH = 1 + \left \dot{\Gamma}_H \right ^2$
	Записать формулу для вычисления волнового сопротивления согласующего	a)	$Z_T = \sqrt{Z_0 R_H}$
7	четвертьволнового трансформатора по	б)	$Z_T = \sqrt{Z_0 / R_H}$
	сопротивлению нагрузки и волновому сопротивлению линии.	в)	$Z_T = \sqrt{Z_0^2 + R_H^2}$
		a)	$\Lambda = \frac{\lambda / \lambda_{\kappa p}}{\sqrt{1 - \left(\lambda / \lambda_{\kappa p}\right)^2}}$
8	Записать выражение для длины волны в волноводе через критическую длину волны и длину волны в свободном пространстве.	б)	$\Lambda = \frac{\lambda}{\sqrt{1 - \left(\lambda / 2\lambda_{\kappa p}\right)^2}}$
		в)	$\Lambda = \frac{\lambda}{\sqrt{1 - \left(\lambda / \lambda_{\kappa p}\right)^2}}$
		a)	$\delta = \sqrt{\frac{1}{\omega \sigma \mu \mu_0}}$
9	Записать формулу для расчета глубины скинслоя в металле.	б)	$\delta = \sqrt{\frac{2}{\omega \sigma \mu \mu_0}}$
		в)	$\delta = \sqrt{\frac{\sigma}{2\omega\mu\mu_0}}$
10	Записать выражение для вычисления резонансной частоты моды E_{010}	a)	$\omega_0 = \frac{cV_{01}}{a}$, где v_{01} – первый 0
	цилиндрического резонатора (радиусом а и		функции Бесселя 0-го

					порядка
				б)	$\omega_0 = \frac{c V_{01}}{a + L}$, где V_{01} — первый 0 функции Бесселя 0-го порядка
				в)	$\omega_0 = \frac{c \nu_{01}}{2a + L}$, где ν_{01} — первый 0 функции Бесселя 0 -го порядка
	Вопрос				Варианты ответа
		a)	B_{2}	$_{i}-B$	$P_{1n} = \rho_S$ $E_{2t} - E_{1t} = 0$ $P_{2t} - E_{1t} = 0$ $P_{2t} - P_{1t} = -P_{2t}$
1	Записать граничные условия для напряженностей и индукций.	б)			$ D_{1n} = 0 $ $ E_{2t} - E_{1t} = 0 $ $ B_{1n} = 0 $ $ H_{2t} - H_{1t} = 0 $ $ D_{1n} = \rho_S $ $ E_{2t} - E_{1t} = 0 $
	2	в)	B_{2}	$_{i}-B$	$B_{1n} = -\mu_0 J_S$ $H_{2t} - H_{1t} = 0$
	Записать выражение (в Декартовой системе координат: ось <i>z</i> направлена вдоль проводов, провода расположены		$\varphi($	<i>x</i> , <i>y</i>)	$= \frac{\tau}{4\pi\varepsilon\varepsilon_0} \ln\frac{(x+a)^2 + y^2}{(x-a)^2 + y^2}$
2	на плоскости xz симметрично относительно оси y) для электростатического потенциала	б)	$\varphi($	<i>x</i> , <i>y</i>)	$\left(x + a\right)^2 + y^2$ $\left(x + a\right)^2 + y^2$ $\left(x - a\right)^2 + y^2$
	двухпроводной линии (расстояние между проводами $2a$, погонный заряд проводов $\pm \tau$).		$\varphi($	<i>x</i> , <i>y</i>)	$= \frac{\tau}{4\pi\varepsilon\varepsilon_0} \ln \frac{x+a+y}{x-a+y}$
	Записать формулу для вычисления энергии магнитного поля постоянных токов (контуров с токами), локализованных в пространстве (в объеме V') через векторный потенциал магнитного поля и плотность тока.				$\frac{1}{2}\int\limits_{V'}rot\vec{A}\vec{J}dV$
3		б)	$W_{\scriptscriptstyle M}$	$t = \frac{1}{2}$	$\frac{1}{2} \int_{V'} \vec{A} di v \vec{J} dV$
		в)	$W_{\scriptscriptstyle M}$	$t = \frac{1}{2}$	$\frac{1}{2}\int\limits_{V'}ec{A}ec{J}dV$
	Чему равна напряженность поля на	a)		0/a	
	полюсе металлического цилиндра	б)	$2E_0$)	
4	радиусом a при внесении его в однородное электростатическое поле напряженностью E_0 ?		3E ₀)	
	Записать выражение для волнового			$=\sqrt{\frac{1}{2}}$	$\overline{rac{\dot{Z}_1}{\dot{Y}_1}}$
5	сопротивления длинной линии через ее погонные сопротивление и	б)		$=\sqrt{2}$	$\overline{\dot{Z}_1\dot{Y_1}}$
	проводимость.			= -,	$j\sqrt{\frac{Z_1}{\dot{Y_1}}}$
6	Записать формулу для расчета коэффициента отражения нагрузки по	a)	$\dot{\Gamma}_H$	$=\frac{Z}{Z}$	$\frac{\dot{Z}_H - Z_0}{\dot{Z}_H + Z_0}$

	ее комплексному сопротивлению и волновому сопротивлению линии.	б)	$\dot{\Gamma}_H = \frac{\dot{Z}_H + Z_0}{\dot{Z}_H - Z_0}$
		в)	$\dot{\Gamma}_{H} = \frac{\dot{Z}_{H} + Z_{0}}{\dot{Z}_{H} - Z_{0}}$ $\dot{\Gamma}_{H} = \frac{\dot{Z}_{H}}{Z_{0}}$
	Записать формулу для вычисления	a)	$Z_0 \approx \frac{50}{\sqrt{\varepsilon}} \ln \frac{r_2}{r_1}$
7	волнового сопротивления коаксиальной линии (радиусы проводников r_1 и r_2 , заполнение – диэлектрик с	б)	$Z_0 \approx \frac{60}{\sqrt{\varepsilon}} \ln \frac{r_2}{r_1}$
	проницаемостью ε).	в)	$Z_0 \approx \frac{377}{\sqrt{\varepsilon}} \ln \frac{r_2}{r_1}$ $k_{\kappa p}^2 + K_z^2 = k^2$
	Записать уравнение связи волновых	a)	$k_{\kappa p}^2 + K_z^2 = k^2$
8	чисел (критического $k_{\kappa p}$, в свободном пространстве k и в волноводе K_z) для волны в волноводе.	б)	$k^2 + K_z^2 = k_{\kappa p}^2$
		в)	Ψ 2
			$\dot{\vec{E}}_t \approx 0, \dot{\vec{H}}_t = 0$
9	Записать граничное условие Леонтовича.	б)	$\dot{\vec{E}}_t \approx \dot{Z}_S \dot{\vec{H}}_t$
		в)	$\begin{aligned} \dot{\vec{E}}_t &\approx \dot{Z}_S \dot{\vec{H}}_t \\ \dot{\vec{E}}_t &\approx \dot{Z}_S \left[\dot{\vec{H}}_t \times \vec{n}_0 \right] \end{aligned}$
		a)	$k_0 = \sqrt{\left(\frac{m\pi}{a}\right)^2 + \left(\frac{n\pi}{b}\right)^2 + \left(\frac{p\pi}{L}\right)^2}$
10	Записать выражение для вычисления резонансного волнового числа моды	б)	$k_0 = \sqrt{\left(rac{ u_{mn}}{a} ight)^2 + \left(rac{p\pi}{L} ight)^2}$, где $ u_{mn} - n$ -ый 0
10	$\mathbf{H}_{\mathrm{mnp}}$ «прямоугольного» резонатора ($a \times$		функции Бесселя <i>т</i> -го порядка
	$b \times L$).	в)	$k_0 = \sqrt{\left(rac{{ u}_{mn}'}{a} ight)^2 + \left(rac{p\pi}{L} ight)^2}$, где ${ u}_{mn} - n$ -ый
			0 первой производной функции
			Бесселя <i>т</i> -го порядка