« »

ι ,,

.....

РАБОЧАЯ ПРОГРАММА УЧЕБНОЙ ДИСЦИПЛИНЫ Графические системы

: 12.03.04 , :

: 2, : 3

Компетенция ФГОС: ОПК.4 готовность применять современные средства редактирования изображений и чертежей и подготовки конструкторско-то документации; в части следующих результатов обучения:	
2. ,	,
1. : AutoCAD, Co Word, Matlab, ORCAD, LABVIEW	rel-Draw, MathCAD, P-CAD,
2.	
Компетенция ФГОС: ОПК.9 способность использовать навыки работы с в методами информационных технологий, соблюдать основные требования безопасности; в части следующих результатов обучения:	
6. ,	
Компетенция ФГОС: ПК.8 способность проводить поверку, наладку и рег настройку программных средств, используемых для разработки, производ биомедицинской и экологической техники; в части следующих результать	ства и настройки
2	
2.	
	2.1
, , ,)	
.4. 2	,
1. знать элементы начертательной геометрии и инженерной графики, геометрическое моделирование, программные средства компьютерной графики	;
.4. 1 MathCAD, P-CAD, Word, Matlab, ORCAD, LABVIEW	: AutoCAD, Corel-Draw,
2. уметь использовать типовые прикладные программы: AutoCAD, Corel-Draw, MathCAD, P-CAD, Word, Matlab, ORCAD, LABVIEW при конструировании медицинских изделий	;
.4. 2	
3. уметь представлять технические решения с использованием средств компьютерной графики и геометрического моделирования	;
.8. 2	-
4 . знать компьютерные технологии обработки и анализа медико-биологических данных	;
.9. 6	,
5. иметь навык работы с типовыми пакетами прикладных программ, применяемых при проектировании аппаратов, приборов и систем медицинского назначения	;

	, .					
:3	I	l				
:						
1.	0	2	1, 2, 3			
2.	0	2	1, 3			
3. GPU	0	2	1, 3			
:	•	•	•			
4. VRML	2	2	1, 3			
5. X3D	2	2	1, 3			
:						
6. OpenGL	2	4	1, 3			
7. DirectX	0	2	1, 3			
8. WebGL	2	2	1, 3			
		ı				3.2
	, .					
:3	1					
:						
1. VRML	2	4	4, 5			
2. X3D	2	4	4, 5			
3. OpenGL	0	10	4, 5			
4.						
. 2						
:3			2 2 5	124	2	
1			2, 3, 5	24	3	

```
[2011]. -
                         : http://elibrary.nstu.ru/source?bib_id=vtls000156320. -
                                230100 "
                                                                        , 2015. - 54, [2] .:
                : http://elibrary.nstu.ru/source?bib_id=vtls000215043
         (8
                                                   , [2011]. -
http://elibrary.nstu.ru/source?bib_id=vtls000156319. -
                                                                                                , [2011]. -
                : http://elibrary.nstu.ru/source?bib_id=vtls000161985. -
 2
                                                             1, 2, 3, 4, 5
                                                         230100 "
                                                                                                   , 2015. -
                                  - :[
                                       : http://elibrary.nstu.ru/source?bib_id=vtls000215043
                                                            1, 2, 3, 4, 5
                                     DirectX:
                      ]:
                           , [2011]. -
                                                    : http://elibrary.nstu.ru/source?bib_id=vtls000156320.
                                                230100 "
                                                                                       , 2015. - 54, [2] .:
                            : http://elibrary.nstu.ru/source?bib_id=vtls000215043
                              ] (
                                                                     , [2011]. -
http://elibrary.nstu.ru/source?bib_id=vtls000156319. -
                                                                                                , [2011]. -
               : http://elibrary.nstu.ru/source?bib id=vtls000161985. -
                                                              (9
                                                                         ] (
                                                                                                  ]:
[2011]. -
                         : http://elibrary.nstu.ru/source?bib_id=vtls000156320. -
                                230100 "
                                                                        , 2015. - 54, [2] .:
                : http://elibrary.nstu.ru/source?bib_id=vtls000215043
         (8
                                                   , [2011]. -
http://elibrary.nstu.ru/source?bib_id=vtls000156319. -
                                                                                                , [2011]. -
               : http://elibrary.nstu.ru/source?bib_id=vtls000161985. -
                                       5.
```

. 5.1).

5 1

 3.1
-
e-mail

	,					5.2
1 Кратисо	е описание применения:					
Кратко	е описание применения.					
	6.					
(),		- 15	5-	Е	CTS.	
	. 6.1.					
						6.1
	:3					
Лекция:		10		20		
Лаборан	порная:	17		35		
РГ3:		12		25		
Зачет:	6.2	10		20		
	· ·					
				1		6.2
				1		
.4	2.	,		+	+	+
	1. MathCAD, P-CAD, Word, Matlab, ORCAD, LABVIEW	AutoCAD, Cor	el-Draw,	+	+	+
	2.			+	+	+
.9	6.	,		+	+	+

1

+

+

+

.

2.

- **1.** Веретельникова Е. Л. Графические системы [Электронный ресурс] : конспект лекций / Е. Л. Веретельникова ; Новосиб. гос. техн. ун-т. Новосибирск, [2015]. Режим доступа: http://elibrary.nstu.ru/source?bib id=vtls000222407. Загл. с экрана.
- **2.** Гужов В. И. Компьютерная графика (8 семестр) [Электронный ресурс] : электронный учебно-методический комплекс / В. И. Гужов ; Новосиб. гос. техн. ун-т. Новосибирск, [2011]. Режим доступа: http://elibrary.nstu.ru/source?bib id=vtls000156319. Загл. с экрана.
- **3.** Гужов В. И. Методы измерения 3D-профиля объектов. Контактные, триангуляционные системы и методы структурированного освещения : учебное пособие / В. И. Гужов ; Новосиб. гос. техн. ун-т. Новосибирск, 2015. 79, [2] с. : ил.. Режим доступа: http://elibrary.nstu.ru/source?bib id=vtls000221974
- **4.** Гужов В. И. Компьютерная графика (9 семестр) [Электронный ресурс] : электронный учебно-методический комплекс / В. И. Гужов ; Новосиб. гос. техн. ун-т. Новосибирск, [2011]. Режим доступа: http://elibrary.nstu.ru/source?bib_id=vtls000156320. Загл. с экрана.
- **1.** Технология разработки диалоговых графических систем / С. Е. Базаева, В. Б. Бетелин, А. И. Грюнталь. С. Г. Романюк; отв. ред. Е. П. Велихов. М., 1992. 207 с.

1. ЭБС НГТУ: http://elibrary.nstu.ru/

2. ЭБС «Издательство Лань»: https://e.lanbook.com/

3. GEOMESTATE 3. **GEOMESTATE** 3. **GEOMESTA**

4. 9EC "Znanium.com": http://znanium.com/

5. :

8.

8.1

- 1. Чернышев А. В. Методические указания по курсу «Интерактивные графические системы» [Электронный ресурс]: учебно-методическое пособие / А. В. Чернышев; Новосиб. гос. техн. ун-т. Новосибирск, [2011]. Режим доступа: http://elibrary.nstu.ru/source?bib id=vtls000161985. Загл. с экрана.
- **2.** Графические системы : методические указания к лабораторным работам для очной и заочной форм обучения АВТФ, направления 230100 "Информатика и вычислительная техника" / Новосиб. гос. техн. ун-т ; [сост.: В. В. Ландовский, Е. Н. Павенко]. Новосибирск, 2015. 54, [2] с. : ил., табл.. Режим доступа: http://elibrary.nstu.ru/source?bib id=vtls000215043

- 1 Microsoft Windows
- 2 Microsoft Office

1	BenQ Projector MX660P	
2	5	

Федеральное государственное бюджетное образовательное учреждение высшего образования «Новосибирский государственный технический университет»

Кафедра систем сбора и обработки данных Кафедра вычислительной техники

		"УТВЕРЖДАЮ"
		ДЕКАН АВТФ
		к.т.н. Рева И. Л.
•	"	Γ.

ФОНД ОЦЕНОЧНЫХ СРЕДСТВ

УЧЕБНОЙ ДИСЦИПЛИНЫ Графические системы

Образовательная программа: 09.03.02 Информационные системы и технологии

Факультет автоматики и вычислительной техники

Обобщенная структура фонда оценочных средств учебной дисциплины

Тема	Код формируемой компетенции	Знания/умения	Контролирующее мероприятие (экзамен, зачет, курсовой проект и т.п.)
Язык описания объектов VRML	ПК.26 ПК.27	y2. Уметь анализировать современные достижения в области исследования y3. Уметь оформлять полученные рабочие результаты в виде презентаций	Зачет Лабораторная РГЗ
Язык описания трехмерных объектов X3D		y2. Уметь анализировать современные достижения в области исследования y3. Уметь оформлять полученные рабочие результаты в виде презентаций	Зачет Лабораторная РГЗ
Задание объектов в OpenGL	ПК.26 ПК.36	31. Знать основные приемы и законы создания и чтения чертежей и документации по аппаратным и программным компонентам информационных систем у3. Уметь оформлять полученные рабочие результаты в виде презентаций	Зачет Лабораторная РГЗ
Разработка объектов на языке X3D		31. Знать основные приемы и законы создания и чтения чертежей и документации по аппаратным и программным компонентам информационных систем у3. Уметь оформлять полученные рабочие результаты в виде презентаций	Зачет Лабораторная РГЗ
Разработка объектов на языке VRML		31. Знать основные приемы и законы создания и чтения чертежей и документации по аппаратным и программным компонентам информационных систем у3. Уметь оформлять полученные рабочие результаты в виде презентаций	Зачет Лабораторная РГЗ
Поколения графических ускорителей	ПК.27	у2. Уметь анализировать современные достижения в области исследования	Зачет РГЗ
Архитектура GPU		у2. Уметь анализировать современные достижения в области исследования	Зачет РГЗ
Графические системы		у2. Уметь анализировать современные достижения в области исследования	Зачет РГЗ
Введение в DirectX	ПК.27 ПК.36	31. Знать основные приемы и законы создания и чтения чертежей и документации по аппаратным и программным компонентам информационных систем у2. Уметь анализировать современные достижения в области исследования	Зачет Лабораторная РГЗ
Введение в WebGL		31. Знать основные приемы и законы создания и чтения чертежей и документации по аппаратным и программным компонентам информационных систем у2. Уметь анализировать современные достижения в области исследования	Зачет Лабораторная РГЗ
Введение в OpenGL		31. Знать основные приемы и законы создания и чтения чертежей и документации по аппаратным и программным компонентам информационных систем у2. Уметь анализировать современные достижения в области исследования	Зачет Лабораторная РГЗ

Список вопросов для зачета

- 1. Состав графической системы
- 2. История развития графических систем
- 3. Графические ускорители (GPU)
- 4. Поколения графических ускорителей
- 5. Интерфейсы видеокарт
- 6. Классический графический конвейер
- 7. Архитектура GPU
- 8. Язык описания трехмерных объектов VRML
- 9. Язык описания трехмерных объектов ХЗD
- 10. Программный интерфейс OpenGL
- 11. Программный интерфейс DirectX
- 12. Программный интерфейс WebGL

Федеральное государственное бюджетное образовательное учреждение высшего образования «Новосибирский государственный технический университет»

Кафедра вычислительной техники Кафедра систем сбора и обработки данных

	"УТВЕРЖДАЮ"
	ДЕКАН АВТФ
	к.т.н., доцент И.Л. Рева
"	Γ.

ФОНД ОЦЕНОЧНЫХ СРЕДСТВ

УЧЕБНОЙ ДИСЦИПЛИНЫ

Графические системы

Образовательная программа: 12.03.04 Биотехнические системы и технологии, профиль: Биотехнические и робототехнические системы

1. **Обобщенная структура фонда оценочных средств учебной дисциплины** Обобщенная структура фонда оценочных средств по д**исциплине** Графические системы приведена в Таблице.

Таблица

			Этапы оцени	ки компетенций
Формируемые компетенции	Показатели сформированности компетенций (знания, умения, навыки)	Темы	Мероприятия текущего контроля (курсовой проект, РГЗ(Р) и др.)	Промежуточная аттестация (экзамен, зачет)
ОПК.4 готовность применять современные средства выполнения и редактирования изображений и чертежей и подготовки конструкторскотехнологической документации	32. знать элементы начертательной геометрии и инженерной графики, геометрическое моделирование, программные средства компьютерной графики	Архитектура GPU Введение в DirectX Введение в OpenGL Введение в WebGL Графические системы Поколения графических ускорителей Язык описания объектов VRML Язык описания трехмерных объектов X3D	Отчет по лабораторной работе РГЗ	Зачет
ОПК.4	у1. уметь использовать типовые прикладные программы: AutoCAD, Corel-Draw, MathCAD, P-CAD, Word, Matlab, ORCAD, LABVIEW при конструировании медицинских изделий	Графические системы	Отчет по лабораторной работе РГЗ	Зачет
ОПК.4	у2. уметь представлять технические решения с использованием средств компьютерной графики и геометрического моделирования	Архитектура GPU Введение в DirectX Введение в OpenGL Введение в WebGL Графические системы Поколения графических ускорителей Язык описания объектов VRML Язык описания трехмерных объектов X3D	Отчет по лабораторной работе РГЗ	Зачет
ОПК.9 способность использовать навыки работы с компьютером, владеть методами информационных технологий, соблюдать основные требования информационной безопасности	уб. иметь навык работы с типовыми пакетами прикладных программ, применяемых при проектировании аппаратов, приборов и систем медицинского назначения	Задание объектов в OpenGL Разработка объектов на языке VRML Разработка объектов на языке X3D	Отчет по лабораторной работе РГЗ	Зачет

ПК.8/ПТ	32. знать	Задание объектов в OpenGL	Отчет по	Зачет
способность	компьютерные	Разработка объектов на языке	лабораторной	
проводить поверку,	технологии	VRML Разработка объектов на	работе РГЗ	
наладку и	обработки и анализа	языке X3D		
регулировку	медико-			
оборудования,	биологических			
настройку	данных			
программных				
средств,				
используемых для				
разработки,				
производства и				
настройки				
биомедицинской и				
экологической				
техники				

2. Методика оценки этапов формирования компетенций в рамках дисциплины.

Промежуточная аттестация по дисциплине проводится в 3 семестре - в форме дифференцированного зачета, который направлен на оценку сформированности компетенций ОПК.4, ОПК.9, ПК.8/ПТ.

Зачет проводится в письменной форме, варианты билетов составляются из вопросов, приведенных в паспорте зачета, позволяющих оценить показатели сформированности соответствующих компетенций

Кроме того, сформированность компетенций проверяется при проведении мероприятий текущего контроля, указанных в таблице раздела 1.

В 3 семестре обязательным этапом текущей аттестации является расчетно-графическое задание (работа) ($P\Gamma 3(P)$). Требования к выполнению $P\Gamma 3(P)$, состав и правила оценки сформулированы в паспорте $P\Gamma 3(P)$.

Общие правила выставления оценки по дисциплине определяются балльно-рейтинговой системой, приведенной в рабочей программе учебной дисциплины.

На основании приведенных далее критериев можно сделать общий вывод о сформированности компетенций ОПК.4, ОПК.9, ПК.8/ПТ, за которые отвечает дисциплина, на разных уровнях.

Общая характеристика уровней освоения компетенций.

Ниже порогового. Уровень выполнения работ не отвечает большинству основных требований, теоретическое содержание курса освоено частично, пробелы могут носить существенный характер, необходимые практические навыки работы с освоенным материалом сформированы не достаточно, большинство предусмотренных программой обучения учебных заданий не выполнены или выполнены с существенными ошибками.

Пороговый. Уровень выполнения работ отвечает большинству основных требований, теоретическое содержание курса освоено частично, но пробелы не носят существенного характера, необходимые практические навыки работы с освоенным материалом в основном сформированы, большинство предусмотренных программой обучения учебных заданий выполнено, некоторые виды заданий выполнены с ошибками.

Базовый. Уровень выполнения работ отвечает всем основным требованиям, теоретическое содержание курса освоено полностью, без пробелов, некоторые практические навыки работы с освоенным материалом сформированы недостаточно, все предусмотренные программой обучения учебные задания выполнены, качество выполнения ни одного из них не оценено минимальным числом баллов, некоторые из выполненных заданий, возможно, содержат ошибки.

Продвинутый. Уровень выполнения работ отвечает всем требованиям, теоретическое содержание курса освоено полностью, без пробелов, необходимые практические навыки работы с освоенным материалом сформированы, все предусмотренные программой обучения учебные задания выполнены, качество их выполнения оценено числом баллов, близким к максимальному.

Федеральное государственное бюджетное образовательное учреждение высшего образования «Новосибирский государственный технический университет» Кафедра вычислительной техники Кафедра инженерной графики Кафедра систем сбора и обработки данных

Паспорт зачета

по дисциплине «Компьютерная графика», 2 семестр

1. Методика оценки

Зачет проводится в письменной форме, по билетам. Билет формируется по следующему правилу: первый вопрос выбирается из диапазона вопросов 1-6, второй вопрос из диапазона вопросов 7-12 (список вопросов приведен ниже). В ходе экзамена преподаватель вправе задавать студенту дополнительные вопросы из общего перечня (п. 4).

Форма билета для зачета

НОВОСИБИРСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ Факультет АВТФ

Билет № к зачету по дисциплине «Компьютерная графика»				
1. Вопрос 1 2. Вопрос 2.				
Утверждаю: зав. кафедрой	(подпись)	_ должность, ФИО (дата)		

2. Критерии оценки

• Ответ на билет для зачета считается сданным на **пороговом** уровне, если содержание ответа показывает частичное освоение материала, продемонстрированы основные практические умения работы с материалом, имеются ошибки в изложении и применении учебного материала, но пробелы не носят существенного характера. Оценка «удовлетворительно», 10-14 балла.

- Ответ на билет для зачета считается сданным на **базовом** уровне, если содержание ответа свидетельствует о полном освоении соответствующей части (раздела) курса. В ответе имеются некоторые неточные сведения, отсутствуют детали. В практическом применении материала (задачах, примерах) имеются незначительные ошибки или неточности. Нет дополнительных сведений из специальной литературы, выходящих за пределы лекционного курса. Оценка «хорошо», 15-18 балла.
- Ответ на билет для зачета считается сданным на **продвинутом** уровне, если содержание ответа свидетельствует о полном освоении соответствующей части курса, в практическом применении материала нет ошибок и неточностей. В ответе содержатся существенные дополнительные сведения, выходящие за пределы лекционного курса. Оценка «отлично», 19 20 баллов.

3. Шкала оценки

Зачет считается сданным, если сумма баллов по всем заданиям билета оставляет не менее 10 баллов (из 20 возможных).

В общей оценке по дисциплине баллы за зачет учитываются в соответствии с правилами балльно-рейтинговой системы, приведенными в рабочей программе дисциплины.

4. Вопросы к зачету по дисциплине «Компьютерная графика»

- 1. Основные задачи компьютерной графики
- 2. Растровая графика.
- 3. Рисование отрезков
- 4. Устранение ступенчатости
- 5. Кривые Безье
- 6. Основы аналитической геометрии
- 7. Отсечение и заполнение областей
- 8. Задание 3D объектов
- 9. Геометрические преобразования
- 10. Удаление невидимых линий
- 11. Освещенность
- 12. Перспектива

Федеральное государственное бюджетное образовательное учреждение

высшего образования

«Новосибирский государственный технический университет»

Кафедра вычислительной техники

Кафедра систем сбора и обработки данных

Паспорт расчетно-графического задания (работы)

по дисциплине «Графические системы», 3 семестр

1. Методика оценки

В рамках расчетно-графического задания (работы) по дисциплине студенты должны написать программу, иллюстрирующую предложенный алгоритм

При выполнении расчетно-графического задания (работы) студенты должны провести анализ объекта, выбрать и обосновать диагностические признаки и параметры, разработать алгоритмы диагностирования, написать программный код.

Обязательные структурные части РГЗ.

- 1. титульный лист
- 2. введение (о понятиях и определениях, используемых в алгоритме)
- 3. краткое описание алгоритма-иллюстрации, его блок схему
- 4. описание программы
- 5. заключение.

Оцениваемые позиции:

2. Критерии оценки

- Работа считается не выполненной, если выполнены не все части РГЗ(Р), отсутствует анализ объекта, диагностические признаки не обоснованы, аппаратные средства не выбраны или не соответствуют современным требованиям, оценка составляет 0-12 баллов.
- Работа считается выполненной на пороговом уровне, если части РГЗ(Р) выполнены формально: анализ объекта выполнен без декомпозиции, диагностические признаки недостаточно обоснованы, аппаратные средства не соответствуют современным требованиям, оценка составляет 13-17 баллов.
- Работа считается выполненной на базовом уровне, если анализ объекта выполнен в полном объеме, признаки и параметры диагностирования обоснованы, алгоритмы разработаны, но не оптимизированы, аппаратные средства выбраны без достаточного обоснования, оценка составляет 18-21 баллов
- Работа считается выполненной на продвинутом уровне, если анализ объекта выполнен в полном объеме, признаки и параметры диагностирования обоснованы, алгоритмы разработаны и оптимизированы, выбор аппаратных средств обоснован, оценка составляет 22-25 баллов.

3. Шкала оценки

В общей оценке по дисциплине баллы за РГЗ(Р) учитываются в соответствии с правилами балльно-рейтинговой системы, приведенными в рабочей программе дисциплины.

4. Примерный перечень тем РГЗ(Р)

- 1. Построение выпуклой оболочки методом заворачивания подарка
- 2. Построение выпуклой оболочки метод Грехема
- 3. Построение выпуклой оболочки сортировка по х
- 4. Построение выпуклой оболочки метод слияния
- 5. Алгоритм пересечения выпуклых многоугольников
- 6. Построение диаграммы Вороного (ОРС)