« »

.....

РАБОЧАЯ ПРОГРАММА УЧЕБНОЙ ДИСЦИПЛИНЫ Методы создания новых материалов

: 15.04.05

,

: 1, : 12

	-	,	
		1	2
1	()	3	5
2		108	180
3	, .	34	40
4	, .	0	0
5	, .	0	0
6	, .	0	0
7	, .	0	0
8	, .	2	2
9	, .	32	38
10	, .	74	140
11	(, ,		
12			

	1.
Компетенция ФГОС: ПК.11 способность организовывать работы по прое	
высокоэффективных машиностроительных производств и их элементов,	модернизации и
автоматизации действующих, по выбору технологий, инструментальных	
вычислительной техники при реализации процессов проектирования, из	
технического диагностирования и промышленных испытаний машиност	
оптимальных решений при их создании, разработке технологий машинос	
элементов и систем технического и аппаратно-программного обеспечения	
качества, надежности, а также сроков исполнения, безопасности жизнедеч экологии; в части следующих результатов обучения:	тельности и треоовании
3.	
J	,
,	
2.	
Компетенция ФГОС: ПК.5 способность разрабатывать и внедрять эффек	гивные технологии
изготовления машиностроительных изделий, участвовать в модернизаци	
действующих и проектировании новых машиностроительных производст	
средств и систем их оснащения, производственных и технологических про	
автоматизированных систем технологической подготовки производства;	в части следующих
результатов обучения:	
13.	,
2.	
	2.
(
, , ,)	
	l
.5. 13	
,	
1.Знать о современных видах конструкционных материалов	
2.Знать физико-механические характеристики материалов.	
3. Знать технологические методы применения современных материалов.	
.11. 3	
,	
	1
4.Знать о перспективах развития машиностроительной отрасли.	
.11. 2	
5.Знать различные методы получения современных машиностроительных	
материалов.	

3.

3.1

	, .			
:1				
:				
1. (0	4	1, 2, 4, 5	

2.	0	4	1, 2, 4, 5	
3.	0	3	1, 2, 5	·
4	0	3	1, 2, 5	·
5	0	3	1, 2, 5	·
6.	0	3	1, 2, 5	
7.	0	4	1, 2, 5	·
8.	0	3	1, 2, 5	·
9.	0	3	1, 2, 5	·
10.	0	3	1, 2, 5	·
11.	0	3	1, 2, 5	·
12.	0	3	2	
13. ,	0	4	2	,
14	0	3	1, 2, 5	
15.	0	3	2	
16	0	4	2	

	,	•		
17.	0	4	1, 2, 3	
:				
18.	0	4	1, 2, 4, 5	
19.	0	4	1, 2, 5	
20.	0	3	1, 2, 5	
21.	0	3	1, 2, 5	·
22.	0	3	1, 2, 5	·
: 2				
:				
23.	0	2,5	1, 2, 5	·
24.	0	2,5	1, 2, 5	·
25	0	2,5	1, 2, 5	·
26	0	2,5	1, 2, 5	-
27	0	2,5	1, 2, 5	
28	0	2,5	1, 2, 5	·
29.	0	2,5	1, 2, 5	

30	0	2,5	1, 2, 5	
31	0	2,5	1, 2, 5	-
32.	0	2,5	1, 2, 5	
33. ,	0	2,5	1, 2, 5	,
34.	0	2,5	1, 2, 5	,
35.	0	2,5	1, 2, 5	-
36.	0	2,5	1, 2, 5	
37	0	2,5	1, 2, 5	
38.	0	2,5	1, 2, 5	
39	0	2,5	1, 2, 5	-
40.	0	2,5	1, 2, 5	
41.	0	2,5	1, 2, 5	
42	0	2,5	1, 2, 5	
43.	0	2,5	1, 2, 5	
44.	0	2,5	1, 2, 5	

45.	0	2,5	1, 2, 5		<u>.</u>			
46.	0	2,5	1, 2, 5		·			
47.	0	2,5	1, 2, 5		·			
48.	0	2,5	1, 2, 5					
49.	0	2,5	1, 2, 5					
50.	0	2,5	1, 2, 5					
4.								
:1			l		<u> </u>			
1			1, 2, 3, 4, 5	0	32			
: :] , 2016 : http://elibrary.nstu.ru/source?bib_id:	/ 19, [1] .: =vtls0002340		;[<i>:</i>	,			
2			1, 2, 3, 4, 5	74	0			
,		3.1:			1			
; [.: .: http://elibra		, ource?bib] _id=vtls00023404	, 2016	5 19, [1] .:			
1			1, 2, 3, 4, 5	70	10			
)		, :	,	,	,			
	: ; [.: , ,] , 2016 19, [1] .: ; http://elibrary.nstu.ru/source?bib_id=vtls000234042							
2	•		1, 2, 3, 4, 5	0	28			
; ; , , , , , , , ; [.: ; [.: ; [.:								
3			1, 2, 5	70	0			

	,		3.1:					
	; [. : http://eli	: brary.nstu.ru/	, . . source?bib_id=vtl	:] s000234042	, 20	16 19	9, [1]	.:
		5.						
				,			~ 4\	
			-			(. 5.1)	5.1
			-					
		-1	. 0					
		e-mail:rax	kimyanov@corp. kimyanov@corp.	nstu.ru .nstu.ru				
	6.	To mama	imijumo v e corp.					
	0.							
(),				15-	_	Е	CTS.	
•			. 6.1.					
								6.1
	:1							
Зачет:				50		100		
	: 2			<u> </u>				
РГЗ:	r.			30		60		
Экзамен	6.2			20		40		
						ı		6.2
	3.							
.11	,			,			+	+
	2.							
						+	+	+
	13.							
.5	,					+	+	+

- **1.** Фахльман Б. Д. Химия новых материалов и нанотехнологии : [учебное пособие] / Б. Фахльман ; пер. с англ. Д. О. Чаркина, В. В. Уточниковой ; под ред. Ю. Д. Третьякова, Е. А. Гудилина. Долгопрудный, 2011. 463 с., [20] л. ил. : ил., табл.
- **2.** Андриевский Р. А. Наноструктурные материалы: учебное пособие для вузов по направлению подготовки дипломированных специалистов 651800 "Физическое материаловедение" / Р. А. Андриевский, А. В. Рагуля. М., 2005. 178, [9] с.: ил.
- **3.** Материаловедение и технология конструкционных материалов : учебник для вузов / [В. Б. Арзамасов] ; под ред. В. Б. Арзамасова, А. А. Черепахина. М., 2011. 446, [1] с. : ил., табл.
- **4.** Гарифуллин Ф.А. Материаловедение и технология конструкционных материалов [Электронный ресурс]: учебно-методическое пособие/ Ф.А. Гарифуллин, Р.Ш. Аюпов, В.В. Жиляков— Электрон. текстовые данные.— Казань: Казанский национальный исследовательский технологический университет, 2013.— 248 с.— Режим доступа: http://www.iprbookshop.ru/60379.html.— ЭБС «IPRbooks»
- **5.** Наноструктурные материалы [Электронный ресурс]: учебное пособие/ Электрон. текстовые данные. М.: Техносфера, 2009. 488 с. Режим доступа: http://www.iprbookshop.ru/12730.html. ЭБС «IPRbooks»
- **1.** Аморфные металлические сплавы / [Люборский Ф. Е. и др.]; под ред. Ф. Е. Люборского; пер. с англ. А. М. Глезера; под ред. А. Ф. Прокошина. М., 1987. 582, [1] с.: ил.
- **2.** Рогов В. А. Основы высоких технологий : учебное пособие для вузов / В. А. Рогов, Л. А. Ушомирская, А. Д. Чудаков. М., 2007. 253 с. : ил.
- **3.** Братухин А. Г. Новые конструкционные и функциональные материалы и возможности их более широкого применения / А. Г. Братухин, Р. Е. Шалин, А. Г. Ромашин, В. В. Черкасов. СПб., 1992. 55 с. : ил.
- **4.** Порошковая металлургия. Спеченные и композиционные материалы / [Б. Финдайзен и др.]; под ред. В. Шатта; пер. с нем. А. К. Натансона, В. Ф. Горева; под ред. Р. А. Андриевского. М., 1983. 519 с. : ил., табл.
- **5.** Андриевский Р. А. Порошковое материаловедение : [монография] / Р. А. Андривеский. Москва, 1991. 203, [1] с. : ил., схемы
- **6.** Андриевский Р. А. Введение в порошковую металлургия / Р. А. Андриевский ; Акад. наук Кирг. ССР, Ин-т физики. Фрунзе, 1988. 172, [2] с.
- 7. Ковнеристый Ю. К. Физико-химические основы создания аморфных металлических сплавов / Ю. К. Ковнеристый, Э. К. Осипов, Е. А. Трофимова; АН СССР, Ин-т металлургии им. А. А. Байкова. М., 1983. 144, [1] с.: ил.
- 1. 36C HITY: http://elibrary.nstu.ru/
- 2. ЭБС «Издательство Лань»: https://e.lanbook.com/
- **3. GEOMESTRY** 3. **GEOMESTRY** 3.
- 4. 9EC "Znanium.com": http://znanium.com/
- **5.** :

1. Организация самостоятельной работы студентов Новосибирского государственного
технического университета: методическое руководство / Новосиб. гос. техн. ун-т; [сост.: Ю.
В. Никитин, Т. Ю. Сурнина] Новосибирск, 2016 19, [1] с. : табл Режим доступа:
http://elibrary.nstu.ru/source?bib_id=vtls000234042

8.2

- 1 Windows
- 2 Microsoft Office

9.

1	

Федеральное государственное бюджетное образовательное учреждение высшего образования «Новосибирский государственный технический университет»

Кафедра технологии машиностроения

"УТВЕРЖДАЮ"
ДЕКАН МТФ
к.т.н., доцент В.В. Янпольский
΄ ΄΄ Γ.

ФОНД ОЦЕНОЧНЫХ СРЕДСТВ

УЧЕБНОЙ ДИСЦИПЛИНЫ

Методы создания новых материалов

Образовательная программа: 15.04.05 Конструкторско-технологическое обеспечение машиностроительных производств, магистерская программа: Современные технологии в машиностроении

1. **Обобщенная структура фонда оценочных средств учебной дисциплины** Обобщенная структура фонда оценочных средств по дисциплине Методы создания новых материалов приведена в Таблице.

Таблица

			Этапы оценки компетенций			
Формируемые компетенции	Показатели сформированности компетенций (знания, умения, навыки)	Темы	Мероприятия текущего контроля (курсовой проект, РГЗ(Р) и др.)	Промежуточная аттестация (экзамен, зачет)		
ПК.11/ОУ	з3. знать	Аморфное состояние (петля		Зачет, вопросы 1, 2,		
способность	особенности	гистерезиса, механические		18		
организовывать	процесса разработки	свойства). Кристаллизация				
работы по	и производства	аморфных сплавов.				
проектированию	машиностроительны	Нанокристаллические сплавы.				
новых	х изделий,	Основные особенности и				
высокоэффективны	производственных и	характеристики методов				
X	технологических	получения аморфных				
машиностроительн	процессов, средств	материалов				
ых производств и	и систем					
их элементов,	машиностроительны					
модернизации и	х производств					
автоматизации	различного					
действующих, по	назначения					
выбору технологий,						
инструментальных						
средств и средств						
вычислительной						
техники при						
реализации						
процессов						
проектирования,						
изготовления,						
контроля,						
технического						
диагностирования и						
промышленных испытаний						
машиностроительн						
ых изделий, поиску						
оптимальных						
решений при их						
создании,						
разработке						
технологий						
машиностроительн						
ых производств, и						
элементов и систем						
технического и						
аппаратно-						
программного						
обеспечения с						
учетом требований						
качества,						
надежности, а						
также сроков						
исполнения,						
безопасности						
жизнедеятельности						
и требований						
экологии						

ПК.11/ОУ	y2. уметь проводить теоретические и	Аморфное состояние (петля гистерезиса, механические	РГЗ, разделы 1, 2	Зачет, вопросы 1-11, 14, 18-22
	экспериментальные	свойства). Антифрикционные		,
	исследования по	порошковые материалы.		Экзамен, вопросы 1-
	разработке и	Дисперсно-упрочненные		28
	оптимизации	волокнистые композиционные		
	процессов при	материалы. Дисперсно-		
	создании новых	упрочненные		
	материалов	композиционные материалы.		
		Керамические материалы.		
		Клеящие материалы.		
		Композиционные материалы.		
		Конструкционные		
		порошковые материалы.		
		Кристаллизация аморфных		
		сплавов.		
		Нанокристаллические сплавы.		
		Критическая скорость		
		охлаждения. Магнито-мягкие		
		материалы. Медицинские и		
		биологические		
		наноматериалы.		
		Металлические и		
		композиционные покрытия		
		для инструментов из СТМ. Металлы с памятью формы.		
		Метод вакуумного напыления.		
		Метод расплавления. Методы		
		закалки из жидкого состояния.		
		Методы металлизации.		
		Микро- и		
		наноэлектромеханические		
		системы.		
		Наноструктурированные		
		пленки и покрытия.		
		Нанотрубки-металлурги.		
		Неметаллические покрытия		
		для инструментов из СТМ.		
		Новые защитные		
		керамические наноматериалы.		
		Основные особенности и		
		характеристики методов		
		получения аморфных		
		материалов. Оценка		
		способности к аморфизации		
		по критической толщине.		
		Получение		
		нанокристаллического		
		состояния из материала		
		детали. Получение		
		нанопорошков методом		
		детонационного синтеза.		
		Получение нанопорошков		
		методом электровзрыва		
		проволоки. Пористые		
		материалы и материалы со		
		специальными физико- химическими свойствами.		
		Пористые фильтрующие		
		элементы. Проблемы		
		аморфизации жидкости.		
		Процесс стеклования		
		переохлажденной жидкости:		
		превращения при		
		превращения при стекловании. Радиационно-		
		стойкие материалы. Резины.		
		Сверхпроводящие материалы.		
		Синтетические сверхтвердые		

		материалы. Слоистые		
		композиционные материалы.		
		Сплавы с особыми тепловыми		
		и упругими свойствами.		
		Сплавы с регламентируемым		
		температурным		
		коэффициентом линейного		
		расширения. Структура		
		полимерных, биологических и		
		углеродных наноматериалов.		
		Термопластические		
		пластмассы. Термореактивные		
		пластмассы. Технология		
		получения полимерных,		
		пористых, трубчатых и		
		биологических		
		наноматериалов. Условия		
		образования аморфной		
		структуры. Классификация		
		аморфных сплавов.		
		Фрикционные порошковые		
		материалы		
ПК.5/ПТ	з13. знать	Аморфное состояние (петля	РГЗ, разделы 1, 2	Зачет, вопросы 1-22
способность	закономерности	гистерезиса, механические		*
разрабатывать и	изменения свойств	свойства). Антифрикционные		Экзамен, вопросы 1-
внедрять	материалов в	порошковые материалы.		28
эффективные	зависимости от	Возможности применения		
технологии	состава, структуры	аморфных сплавов в качестве		
изготовления	и методов	конструкционного материала.		
машиностроительн	обработки	Дисперсно-упрочненные		
_	оораоотки			
ых изделий,		волокнистые композиционные		
участвовать в		материалы. Дисперсно-		
модернизации и		упрочненные		
автоматизации		композиционные материалы.		
действующих и		Керамические материалы.		
проектировании		Клеящие материалы.		
новых		Композиционные материалы.		
машиностроительн		Конструкционные		
ых производств		порошковые материалы.		
различного		Коррозия аморфных сплавов.		
назначения, средств		Кристаллизация аморфных		
и систем их		сплавов.		
оснащения,		Нанокристаллические сплавы.		
производственных		Критическая скорость		
и технологических		охлаждения. Магнито-мягкие		
процессов с		материалы. Медицинские и		
использованием		биологические		
автоматизированны		наноматериалы.		
х систем		Металлические и		
технологической		композиционные покрытия		
подготовки		для инструментов из СТМ.		
		Металлы с памятью формы.		
производства		1 1		
		Метод вакуумного напыления.		
		Метод расплавления. Методы		
		закалки из жидкого состояния.		
		Методы металлизации.		
		Механические свойства.		
		Микро- и		
		наноэлектромеханические		
		системы.		
		Наноструктурированные		
		пленки и покрытия.		
		Нанотрубки-металлурги.		
		Неметаллические покрытия		
		для инструментов из СТМ.		
		Новые защитные		
		керамические наноматериалы.		
		Основные особенности и		
	1			

характеристики методов получения аморфных материалов. Оценка способности к аморфизации по критической толщине. Получение нанокристаллического состояния из материала детали. Получение нанопорошков методом детонационного синтеза. Получение нанопорошков методом электровзрыва проволоки. Пористые материалы и материалы со специальными физикохимическими свойствами. Пористые фильтрующие элементы. Проблемы аморфизации жидкости. Процесс стеклования переохлажденной жидкости: превращения при стекловании. Радиационностойкие материалы. Резины. Сверхпроводящие материалы. Синтетические сверхтвердые материалы. Слоистые композиционные материалы. Сплавы с особыми тепловыми и упругими свойствами. Сплавы с регламентируемым температурным коэффициентом линейного расширения. Структура полимерных, биологических и углеродных наноматериалов. Термическая стабильность аморфных материалов. Термопластические пластмассы. Термореактивные пластмассы. Технологические факторы, контролирующие свойства аморфных материалов. Технология получения полимерных, пористых, трубчатых и биологических наноматериалов. Условия образования аморфной структуры. Классификация аморфных сплавов. Фрикционные порошковые материалы

2. Методика оценки этапов формирования компетенций в рамках дисциплины.

Промежуточная аттестация по дисциплине проводится в 1 семестре – в форме зачета, во 2 семестре – в виде экзамена, которые направлены на оценку сформированности компетенций ПК.11/ОУ, ПК.5/ПТ.

Зачет и экзамен проводятся в письменной форме по билетам.

Кроме того, сформированность компетенций проверяется при проведении мероприятий текущего контроля, указанных в таблице раздела 1.

В 2 семестре обязательным этапом текущей аттестации является расчетно-графическое задание

(работа) (РГ3(P)). Требования к выполнению РГ3(P), состав и правила оценки сформулированы в паспорте РГ3(P).

Общие правила выставления оценки по дисциплине определяются балльно-рейтинговой системой, приведенной в рабочей программе учебной дисциплины.

На основании приведенных далее критериев можно сделать общий вывод о сформированности компетенций ПК.11/ОУ, ПК.5/ПТ, за которые отвечает дисциплина, на разных уровнях.

Общая характеристика уровней освоения компетенций.

Ниже порогового. Уровень выполнения работ не отвечает большинству основных требований, теоретическое содержание курса освоено частично, пробелы могут носить существенный характер, необходимые практические навыки работы с освоенным материалом сформированы не достаточно, большинство предусмотренных программой обучения учебных заданий не выполнены или выполнены с существенными ошибками.

Пороговый. Уровень выполнения работ отвечает большинству основных требований, теоретическое содержание курса освоено частично, но пробелы не носят существенного характера, необходимые практические навыки работы с освоенным материалом в основном сформированы, большинство предусмотренных программой обучения учебных заданий выполнено, некоторые виды заданий выполнены с ошибками.

Базовый. Уровень выполнения работ отвечает всем основным требованиям, теоретическое содержание курса освоено полностью, без пробелов, некоторые практические навыки работы с освоенным материалом сформированы недостаточно, все предусмотренные программой обучения учебные задания выполнены, качество выполнения ни одного из них не оценено минимальным числом баллов, некоторые из выполненных заданий, возможно, содержат ошибки.

Продвинутый. Уровень выполнения работ отвечает всем требованиям, теоретическое содержание курса освоено полностью, без пробелов, необходимые практические навыки работы с освоенным материалом сформированы, все предусмотренные программой обучения учебные задания выполнены, качество их выполнения оценено числом баллов, близким к максимальному.

Федеральное государственное бюджетное образовательное учреждение высшего образования «Новосибирский государственный технический университет» Кафедра технологии машиностроения

Паспорт зачета

по дисциплине «Методы создания новых материалов», 1 семестр

1. Методика оценки

Зачет проводится в письменной форме, по билетам. В ходе зачета преподаватель вправе задавать студенту дополнительные вопросы из общего перечня (п. 4).

Форма билета для зачета

НОВОСИБИРСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ Факультет МТ

*	
Билет № к зачету по дисциплине «Методы создания новых материалов»	
. Кристаллизация аморфных сплавов. Нанокристаллические сплавы. 2 Условия образования аморфной структуры. Классификация аморфных сплавов.	

Утверждаю: зав. кафедрой ТМС		должность, ФИО
	(подпись)	
		(дата)

2. Критерии оценки

- Ответ на билет для зачета считается **неудовлетворительным**, если студент при ответе на вопросы не дает определений основных понятий, не может ответить на дополнительные вопросы, оценка составляет 25...49 *баллов*.
- Ответ на билет для зачета засчитывается на **пороговом** уровне, если студент дает определение основных понятий, но не может ответить на дополнительные вопросы, оценка составляет 50...72 балла.
- Ответ на билет для зачета билет засчитывается на **базовом** уровне, если студент отвечает на основной вопрос достаточно полно, а на дополнительные вопросы частично, оценка составляет 73...86 *баллов*.
- Ответ на билет для зачета билет засчитывается на **продвинутом** уровне, если в ответе студента имеется комплексный анализ проблемы, на дополнительные вопросы даются полные, развернутые ответы, оценка составляет 87...100 баллов.

3. Шкала оценки

Зачет считается сданным, если средняя сумма баллов составляет не менее 50 баллов (из 100 возможных). Коэффициент, с которым учитывается полученная сумма баллов в общей оценке по дисциплине, составляет 0,2.

В общей оценке по дисциплине баллы за зачет учитываются в соответствии с правилами балльно-рейтинговой системы, приведенными в рабочей программе дисциплины.

4. Вопросы к зачету по дисциплине «Методы создания новых материалов»

- 1. Аморфное состояние (петля гистерезиса, механические свойства и т.д.).
- 2. Основные особенности и характеристики методов получения аморфных материалов (кратко о существующих методах и их основных характеристиках).
- 3. Метод вакуумного напыления.
- 4. Метод расплавления (характеристики различных методов распыления).
- 5. Методы металлизации (электролитическая, химическая).
- 6. Методы закалки из жидкого состояния (лента, пластинки, проволока, порошки).
- 7. Условия образования аморфной структуры. Классификация аморфных сплавов.
- 8. Проблемы аморфизации жидкости.
- 9. Оценка способности к аморфизации по критической толщине.
- 10. Процесс стеклования переохлажденной жидкости: превращения при стекловании.
- 11. Критическая скорость охлаждения.
- 12. Коррозия аморфных сплавов (скорость коррозии в сплавах на основе железа).
- 13. Технологические факторы, контролирующие свойства аморфных материалов (влияние условий охлаждения, химического состава, деформации, термической обработки).
- 14. Магнито-мягкие материалы (материалы с высокой магнитной индукцией, проницаемостью, материалы для магнитных сепараторов).
- 15. Термическая стабильность аморфных материалов.
- 16. Механические свойства (прочность, пластичность, хрупкость).
- 17. Возможности применения аморфных сплавов в качестве конструкционного материала.
- 18. Кристаллизация аморфных сплавов. Нанокристаллические сплавы.
- 19. Получение нанокристаллического состояния из материала детали (РКУП, кручение, винтовое прессование).
- 20. Получение нанопорошков методом детонационного синтеза.
- 21. Получение нанопорошков методом электровзрыва проволоки.
- 22. Наноструктурированные пленки и покрытия.

Федеральное государственное бюджетное образовательное учреждение высшего образования «Новосибирский государственный технический университет» Кафедра технологии машиностроения

Паспорт экзамена

по дисциплине «Методы создания новых материалов», 2 семестр

1. Методика оценки

Экзамен проводится в письменной форме, по билетам. В ходе экзамена преподаватель вправе задавать студенту дополнительные вопросы из общего перечня (п. 4).

Форма экзаменационного билета

НОВОСИБИРСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ Факультет МТ

Билет № к экзамену по дисциплине «Методы создания новых материалов»				
 Керамические материалы. Металлы с памятью формы. 				
Утверждаю: зав. кафедрой ТМС	(подпись)	должность, ФИО		

2. Критерии оценки

- Ответ на экзаменационный билет считается **неудовлетворительным**, если студент при ответе на вопросы не дает определений основных понятий, не может дать ответы на дополнительные вопросы, оценка составляет 25...49 *баллов*.
- Ответ на экзаменационный билет засчитывается на **пороговом** уровне, если студент дает определение основных понятий, но не может ответить на дополнительные вопросы, оценка составляет 50...72 балла.
- Ответ на экзаменационный билет засчитывается на **базовом** уровне, если студент отвечает на основной вопрос достаточно полно, а на дополнительные вопросы частично, оценка составляет 73...86 *баллов*.
- Ответ на экзаменационный билет засчитывается на **продвинутом** уровне, если в ответе студента имеется комплексный анализ проблемы, на дополнительные вопросы даются полные, развернутые ответы, оценка составляет 87...100 баллов.

3. Шкала оценки

Экзамен считается сданным, если средняя сумма баллов по всем вопросам составляет не менее 50 баллов (из 100 возможных).

Коэффициент, с которым учитывается полученная сумма баллов в общей оценке по дисциплине, составляет 0,4.

В общей оценке по дисциплине экзаменационные баллы учитываются в соответствии с правилами балльно-рейтинговой системы, приведенными в рабочей программе дисциплины.

4. Вопросы к экзамену по дисциплине «Методы создания новых материалов»

- 1. Сплавы с особыми тепловыми и упругими свойствами.
- 2. Сплавы с регламентируемым температурным коэффициентом линейного расширения.
 - 3. Металлы с памятью формы.
 - 4. Радиационно-стойкие материалы.
 - 5. Сверхпроводящие материалы.
 - 6. Керамические материалы.
 - 7. Композиционные материалы.
 - 8. Дисперсно-упрочненные композиционные материалы.
 - 9. Дисперсно-упрочненные волокнистые композиционные материалы.
 - 10. Слоистые композиционные материалы.
 - 11. Структура полимерных, биологических и углеродных наноматериалов.
- 12. Технология получения полимерных, пористых, трубчатых и биологических наноматериалов.
- 13. Пористые материалы и материалы со специальными физико-химическими свойствами.
 - 14. Новые защитные керамические наноматериалы.
 - 15. Нанотрубки-металлурги.
 - 16. Медицинские и биологические наноматериалы.
 - 17. Микро- и наноэлектромеханические системы.
 - 18. Термопластические пластмассы (термопласты).
 - 19. Термореактивные пластмассы (реактопласты).
 - 20. Резины.
 - 21. Клеящие материалы.
 - 22. Конструкционные порошковые материалы.
 - 23. Антифрикционные порошковые материалы.
 - 24. Фрикционные порошковые материалы.
 - 25. Пористые фильтрующие элементы.
 - 26. Синтетические сверхтвердые материалы.
 - 27. Металлические и композиционные покрытия для инструментов из СТМ.
 - 28. Неметаллические покрытия для инструментов из СТМ.

Федеральное государственное бюджетное образовательное учреждение высшего образования «Новосибирский государственный технический университет» Кафедра технологии машиностроения

Паспорт

расчетно-графического задания (работы)

по дисциплине «Методы создания новых материалов», 2 семестр

1. Методика оценки

В рамках расчетно-графического задания (работы) по дисциплине студенты должны рассмотреть индивидуальный теоретический вопрос.

При выполнении расчетно-графического задания (работы) студенты должны провести подробный анализ выбранной ими темы.

Обязательные структурные части РГЗ:

- 1. Способы получения рассматриваемого типа материала.
- 2. Возможные направления его применения.

2. Критерии оценки

- Работа считается не выполненной, если в работе не представлены необходимые расчеты, тема работы не раскрыта, оценка составляет 0...29 баллов.
- Работа считается выполненной **на пороговом** уровне, если в работе представлены все необходимые расчеты, в которых могут встречаться ошибки, отсутствуют некоторые пояснения, оценка составляет 30..40 баллов.
- Работа считается выполненной **на базовом** уровне, если расчеты представлены без ошибок, но при этом не хватает пояснений, соответствующих рисунков, оценка составляет 41...50 баллов.
- Работа считается выполненной **на продвинутом** уровне, если все представленные расчеты верны, даны развернутые пояснения, представлены все необходимые рисунки, работа выполнена аккуратно, оценка составляет 51...60 баллов.

3. Шкала оценки

Расчетно-графическое задание считается сданным, если количество баллов составляет не менее 30 баллов (из 60 возможных).

В общей оценке по дисциплине баллы за $P\Gamma 3(P)$ учитываются в соответствии с правилами балльно-рейтинговой системы, приведенными в рабочей программе дисциплины.

4. Примерный перечень тем РГЗ(Р)

- 1. Сплавы с особыми тепловыми и упругими свойствами.
- 2. Сплавы с регламентируемым температурным коэффициентом линейного расширения.
 - 3. Металлы с памятью формы.
 - 4. Радиационно-стойкие материалы.
 - 5. Сверхпроводящие материалы.
 - 6. Керамические материалы.
 - 7. Композиционные материалы.
 - 8. Дисперсно-упрочненные композиционные материалы.
 - 9. Дисперсно-упрочненные волокнистые композиционные материалы.
 - 10. Слоистые композиционные материалы.

- 11. Структура полимерных, биологических и углеродных наноматериалов.
- 12. Технология получения полимерных, пористых, трубчатых и биологических наноматериалов.
- 13. Пористые материалы и материалы со специальными физико-химическими свойствами.
 - 14. Новые защитные керамические наноматериалы.
 - 15. Нанотрубки-металлурги.
 - 16. Медицинские и биологические наноматериалы.
 - 17. Микро- и наноэлектромеханические системы.
 - 18. Термопластические пластмассы (термопласты).
 - 19. Термореактивные пластмассы (реактопласты).
 - 20. Резины.
 - 21. Клеящие материалы.
 - 22. Конструкционные порошковые материалы.
 - 23. Антифрикционные порошковые материалы.
 - 24. Фрикционные порошковые материалы.
 - 25. Пористые фильтрующие элементы.
 - 26. Синтетические сверхтвердые материалы.
 - 27. Металлические и композиционные покрытия для инструментов из СТМ.
 - 28. Неметаллические покрытия для инструментов из СТМ.