« »

... . . .

РАБОЧАЯ ПРОГРАММА УЧЕБНОЙ ДИСЦИПЛИНЫ Статистические методы анализа данных

: 01.03.02

: 4, : 7

		7
1	()	3
2		108
3	, .	46
4	, .	18
5	, .	0
6	, .	18
7	, .	5
8	, .	2
9	, .	8
10	, .	62
11	(, ,	
12		

Компетенция ФГОС: ОПК.1 способ и информатики, основные факты, и и информатикой; в части следующе	концепции, г	тринцип	ы теорий, связа	
5.	1 0	<u> </u>		
Компетенция ФГОС: ПК.2 способн				применять современный
математический аппарат; в части 4.	слеоующих р	езульта	тов ооучения:	
2.				
2.				
				2.1
			(
,	, ,	,)	
.1. 5				
1.Знать базовые методы анализа стат	истических да	анных пр	и построении	;
зависимостей .2. 4				
2. знать теоретические основы методо экспериментальным данным	в посроения з	зависимо	стей по	;
.2. 2				1
3. Владеть методами построения и ана	ализа линейн	ых модел	ей по	;
экспериментальным данным				
3.				
				3.1
_	, .			
:7				
•		,		,
, Mining)	•			(Data
, and the state of				
1.	0	2	1, 2	
		2	1, 2	-
				,
•	•			, ().
, .				().
2.	0	4	1, 2	
		•	1, 4	-
				,

:		•		•	•
					•
•			•	Γ	
3.					
	0	4	1, 2	,	
				-	
:				,	,
	,				
4.	0	4	1, 2	,	
			,	-	
				,	
:).
:		•			
,			•		
5.	0	4	2	,	
				-	
				,	2.2
				_	3.2
	, .				
: 7					
:				. ().	,
, .	•			().).
-				Γ	
				,	
				,	•
1.	0	2	3		
		-	_		•
1	1		l	1	

2.	1	4	3	К- ,	1, , ,
:		•		•	
3. , , ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;	1	4	3	,	, , ,

4.	1	2	3	,
5.	1	2	3	· -
:		• ,	•) .

6.	1	2	3	- (). , ,	
7.	0	2	3	,	, , , , ,	
4.						
:7			3	10	2	
1	-		:	10	:	
01.03.02 - , 02.03.03 - , 02.03.03 - ,						
2			1	40	4	
:						
3			1, 2	12	2	

			:	
, 2016 19, [1] http://elibrary.nstu.ru/source?	.:	;[.: :	, .	: .]
	5.			
			,	
		-		(.5.1).
		_		
	e-mail;			
	e-mail;			
	e-mail			
				5.
1				
Сраткое описание прим лгоритмов ее решения, п			ки задачи, вопро	сов реализации
поритмов се решения, п	losty terminal pes	y JID TUTOD		
6.				
),			15-	ECTS.
,,		. 6.1.		
				6
	· · · · · · · · · · · · · · · · · · ·			
:7				
• т абораторная №1:			6	10
абораторная №2:			6	10
абораторная №3:			6	10
абораторная №4:			6	10
абораторная №5:			6	10
абораторная №6:			6	10
абораторная №7:			6	8
Γ3:			6	12
ачет:			7	20

.1	5.		+
.2	4.		+
	2.	+	

1

7.

- **1.** Тимофеев В. С. Эконометрика : [учебник] / В. С. Тимофеев, А. В. Фаддеенков, В. Ю. Щеколдин ; Новосиб. гос. техн. ун-т. Новосибирск, 2011. 345 с. : ил., табл., портр.
- **2.** Сидняев Н. И. Теория планирования эксперимента и анализ статистических данных : учебное пособие [для вузов по специальности "Прикладная математика"] / Н. И. Сидняев. М., 2011. 399 с. : ил., табл., схемы
- **3.** Малов С. В. Регрессионный анализ. Теоретические основы и практические рекомендации / С. В. Малов ; С.-Петерб. гос. ун-т. Санкт-Петербург, 2013. 275 с.
- **4.** Лисицин Д. В. Методы построения регрессионных моделей : [учебное пособие] / Д. В. Лисицин ; Новосиб. гос. техн. ун-т. Новосибирск, 2011. 74, [2] с. : табл., ил.. Режим доступа: http://elibrary.nstu.ru/source?bib id=vtls000154176
- **5.** Бериков В. Б. Эконометрика : учебное пособие / В. Б. Бериков ; Новосиб. гос. техн. ун-т, Фак. приклад. мат. и информатики. Новосибирск, 2010. 75, [1] с. : ил., табл.. Режим доступа: http://elibrary.nstu.ru/source?bib_id=vtls000148038
- **6.** Компьютерные технологии анализа данных в эконометрике / Д.М. Дайитбегов. 2-е изд., испр. и доп. М.: Вузовский учебник: ИНФРА-М, 2010. 578 с.: 70х100 1/16. (Научная книга). (переплет) ISBN 978-5-9558-0191-9 Режим доступа: http://znanium.com/catalog.php?bookinfo=251791 Загл. с экрана.
- **1.** Дрейпер Н. Р. Прикладной регрессионный анализ : пер. с англ. / Норман Р. Дрейпер, Гарри Смит. М. [и др.], 2007. 911 с. : ил., табл.
- **2.** Кобзарь А. И. Прикладная математическая статистика : для инженеров и научных работников / А. И. Кобзарь. М., 2006. 813 с. : табл.
- **3.** Попов А. А. Конструирование линейных регрессионных моделей с разнотипными переменными : Учеб. пособие для ІУ курса ФПМИ дневной формы обучения / А. А. Попов; Новосиб. гос. техн. ун-т. Новосибирск, 1999. 55 с. : ил.
- **4.** Чубукова И. А. Data Mining : учебное пособие / И. А. Чубукова. М., 2006. 382 с. : ил.
- **5.** Воскобойников Ю. Е. Регрессионный анализ данных в пакете Mathcad : учебное пособие / Ю. Е. Воскобойников. Санкт-Петербург [и др.], 2011. 223, [1] с. : ил., табл. + 1CD.
- 1. 36C HFTY: http://elibrary.nstu.ru/
- 2. ЭБС «Издательство Лань»: https://e.lanbook.com/

4. GEC "Znanium.com" : http://znanium.com/ **5.** : 8. 8.1 1. Статистические методы анализа данных : методические указания для 4 курса ФПМИ всех направлений и специальностей / Новосиб. гос. техн. ун-т; [сост.: А. А. Попов]. -Новосибирск, 2004. - 31 с.. - Режим доступа: http://elibrary.nstu.ru/source?bib id=vtls000031994 2. Попов А. А. Статистические методы анализа данных: методические указания к расчетно-графическому заданию для студентов IV курса ФПМИ всех направлений и специальностей [Электронный ресурс]: учебно-методическое пособие / А. А. Попов; Новосиб. гос. техн. ун-т. - Новосибирск, [2011]. - Режим доступа: http://elibrary.nstu.ru/source?bib id=vtls000162616. - Загл. с экрана. 3. Организация самостоятельной работы студентов Новосибирского государственного технического университета: методическое руководство / Новосиб. гос. техн. ун-т; [сост.: Ю. В. Никитин, Т. Ю. Сурнина]. - Новосибирск, 2016. - 19, [1] с. : табл.. - Режим доступа: http://elibrary.nstu.ru/source?bib id=vtls000234042 4. Статистические методы анализа данных : методические указания к выполнению лабораторных работ и расчетно-графического задания для 4 курса ФПМИ направлений подготовки 01.03.02 - прикладная математика и информатика, 02.03.03 - математическое обеспечение и администрирование информационных систем / Новосиб. гос. техн. ун-т; [сост. А. А. Попов]. - Новосибирск, 2017. - 33, [2] с.. - Режим доступа: http://elibrary.nstu.ru/source?bib id=vtls000235022 8.2 1 Python 9.

	1	2, I-426	
L		Z, 1-420	

Федеральное государственное бюджетное образовательное учреждение высшего образования «Новосибирский государственный технический университет»

Кафедра прикладной математики Кафедра теоретической и прикладной информатики

	"УТВЕРЖДАЮ"
	ДЕКАН ФПМИ
	д.т.н., доцент В.С. Тимофеев
'	Γ.

ФОНД ОЦЕНОЧНЫХ СРЕДСТВ

УЧЕБНОЙ ДИСЦИПЛИНЫ

Статистические методы анализа данных

Образовательная программа: 01.03.02 Прикладная математика и информатика, профиль: Компьютерное моделирование и информационные технологии

1. Обобщенная структура фонда оценочных средств учебной дисциплины

Обобщенная структура фонда оценочных средств по дисциплине Статистические методы анализа данных приведена в Таблице.

Таблица

			Этапы оцени	ки компетенций
Формируемые компетенции	Показатели сформированности компетенций (знания, умения, навыки)	Темы	Мероприятия текущего контроля (курсовой проект, РГЗ(Р) и др.)	Промежуточная аттестация (экзамен, зачет)
ОПК.1 способность использовать базовые знания естественных наук, математики и информатики, основные факты, концепции, принципы теорий, связанных с прикладной математикой и информатикой	35. знать методы теории вероятностей и математической статистики	Задачи статистического анализа данных. Многомерный регрессионный анализ. Интервальное оценивание и проверка гипотез. Многомерный регрессионный анализ. Оценивание параметров Расширения общей линейной модели		Зачет, вопросы 1-109, задача
ПК.2/НИ способность понимать, совершенствовать и применять современный математический аппарат	з4. знать теоретические основы методов построения зависимостей по экспериментальным данным	Выбор общего вида функции регрессии Задачи статистического анализа данных. Многомерный регрессионный анализ. Интервальное оценивание и проверка гипотез. Многомерный регрессионный анализ. Оценивание параметров Расширения общей линейной модели		Зачет, вопросы, 1- 109, задача
ПК.2/НИ	у2. уметь применять основные математические методы при построении моделей	Интервальное оценивание неизвестных параметров регрессионных, моделей проверка гипотез	РГЗ: разделы 1 -8	

2. Методика оценки этапов формирования компетенций в рамках дисциплины.

Промежуточная аттестация по дисциплине проводится в 7 семестре - в форме дифференцированного зачета, который направлен на оценку сформированности компетенций ОПК.1, ПК.2/НИ. Время подготовки на зачете составляет 1,5 часа.

Сформированность компетенций проверяется также при проведении мероприятий текущего контроля, указанных в таблице раздела 1.

В 7 семестре обязательным этапом текущей аттестации является расчетно-графическое задание (работа) (РГ3(P)). Требования к выполнению РГ3(P), состав и правила оценки сформулированы в паспорте РГ3(P).

Общие правила выставления оценки по дисциплине определяются балльно-рейтинговой системой, приведенной в рабочей программе дисциплины.

На основании приведенных далее критериев можно сделать общий вывод о сформированности компетенций ОПК.1, ПК.2/НИ за которые отвечает дисциплина, на разных уровнях.

Общая характеристика уровней освоения компетенций.

Ниже порогового. Уровень выполнения работ не отвечает большинству основных требований, теоретическое содержание курса освоено частично, пробелы могут носить существенный характер, необходимые практические навыки работы с освоенным материалом сформированы не достаточно, большинство предусмотренных программой обучения учебных заданий не выполнены или выполнены с существенными ошибками.

Пороговый. Уровень выполнения работ отвечает большинству основных требований, теоретическое содержание курса освоено частично, но пробелы не носят существенного характера, необходимые практические навыки работы с освоенным материалом в основном сформированы, большинство предусмотренных программой обучения учебных заданий выполнено, некоторые виды заданий выполнены с ошибками.

Базовый. Уровень выполнения работ отвечает всем основным требованиям, теоретическое содержание курса освоено полностью, без пробелов, некоторые практические навыки работы с освоенным материалом сформированы недостаточно, все предусмотренные программой обучения учебные задания выполнены, качество выполнения ни одного из них не оценено минимальным числом баллов, некоторые из выполненных заданий, возможно, содержат ошибки.

Продвинутый. Уровень выполнения работ отвечает всем требованиям, теоретическое содержание курса освоено полностью, без пробелов, необходимые практические навыки работы с освоенным материалом сформированы, все предусмотренные программой обучения учебные задания выполнены, качество их выполнения оценено числом баллов, близким к максимальному.

Федеральное государственное бюджетное образовательное учреждение высшего образования «Новосибирский государственный технический университет»

Кафедра прикладной математики

Кафедра теоретической и прикладной информатики

Паспорт зачета

по дисциплине «Статистические методы анализа данных», 7 семестр

1. Методика оценки

Зачет проводится в письменной форме, по билетам. В ходе зачета преподаватель вправе задавать студенту дополнительные вопросы из общего перечня (п. 4).

Форма билета для зачета

Дисциплина Статистические методы анализа данных

(наименование дисциплины)

БИЛЕТ №

No	Вопрос	Балло
		В
1	Перечислите известные Вам методы оценивания параметров линейных регрессионных моделей	1
2	Для чего в теореме Гаусса-Маркова используется предположение А3: $rg(X) = m$.	1
3	Назовите недостаток максимальной сопряженности как меры измерения мультиколлинеарности	1
4	Какова история происхождения термина "ридж-оценки".	1
5	Что означает термин "ошибка спецификации модели".	1
6	Как вводится так называемый "критерий регулярности".	1
7	Покажите, что в случае "недобора" регрессоров соответствующие компоненты вектора параметров оцениваются смещено	1
8	Для чего в теореме Гаусса-Маркова используется предположение A1: $E(\varepsilon) = 0$.	1
9	По каким причинам и на каких этапах исследования исследователь вынужден возвращаться на более ранние этапы исследования зависимости.	1
10	Покажите, что если P - матрица проектирования на Ω ; где $\Omega = R[X]$ - пространство образов, порождаемое столбцами матрицы X , то $P^2 = P$.	1
11	Получите выражение для оценки неизвестной дисперсии σ^2 по параллельным наблюдениям	1
12	Покажите, что в модели, содержащей свободный член, сумма остатков $e_i = y_i - \hat{y}_i$ равна нулю.	1
13	Как можно найти (оценить) неизвестный параметр (коэффициент) автокорреляции ошибок наблюдений.	1
14	Какое наблюдение можно принять за "точку разбалансировки".	1
15	Задача	6
	Итого	20

Задача

Дана таблица наблюдений:

№	X	y
1	-1	-1.1
2	-1	-0.9
3	0	2.1
4	0	1.9
5	1	5,1
6	1	4.9

- 1. По 6 наблюдениям оценить параметры трех моделей $\eta_1=\theta_1+\theta_2x, \quad \eta_2=\theta_1+\theta_2x^2, \quad \eta_3=\theta_1x+\theta_2x^2$. Какая из этих моделей лучшая по критерию Мэлоуса? Для вычисления критерия Мэлоуса принять, что дисперсия помехи равна $\sigma^2=0.01$.
- 2. Для модели $\eta_1=\theta_1+\theta_2 x$ проверить гипотезу $H:\theta_2=3$. Квантиль $F_{\alpha,1,4}=7.71$. Принимается или отклоняется эта гипотеза?

Составитель д.т.н., про	ф. Попо	в А.А.
		(подпись)
«»	20	Γ.
Заведующий кафедрой	Д.т.н.	В.М. Чубич
		_ (подпись)
// N	20	Г

2. Критерии оценки

• Ответ считается **неудовлетворительным**, если оценка составляет от 0 до 6 баллов, Студент при ответе на вопросы не дает определений основных понятий, при решении задачи допускает принципиальные ошибки;

- Ответ засчитывается на **пороговом** уровне, если оценка составляет от 7 до 10 баллов. Студент при ответе на вопросы дает определение основных понятий, знает базовые алгоритмы, при решении задачи допускает непринципиальные ошибки;
- Ответ засчитывается на **базовом** уровне, если оценка составляет от 11 до 15 баллов. Студент при ответе на вопросы формулирует основные понятия, методы, алгоритмы, проводит анализ причин, условий, не допускает ошибок при решении задачи;
- Ответ засчитывается на **продвинутом** уровне, если оценка составляет от 16 до 20 баллов. Студент владеет математическим аппаратом, методами прикладной статистики, демонстрирует глубокие знания и навыки решения задачи построения зависимости.

3. Шкала оценки

Итоговая аттестация по курсу проводится в виде зачета. Для получения допуска к зачету студент должен, как правило, выполнить и защитить все лабораторные работы, выполнить РГЗ. Основной критерий допуска к зачету — число набранных баллов в течение семестра, которое должно составить не менее 43 баллов.

Максимальное количество набираемых баллов в период итоговой аттестации равно 20 баллам. Если студент по результатам итоговой аттестации набирает менее 7 баллов, то ему выставляется оценка "неудовлетворительно" уровня FX вне зависимости от числа набранных баллов в семестре с возможностью пересдачи. При успешной пересдаче ему выставляется оценка "удовлетворительно" уровня Е. Общее количество набранных баллов по дисциплине определяется простым суммированием набранных баллов по лабораторным работам, РГЗ и на зачете.

Перевод набранного количества баллов в 15 бальную систему и 4-х бальную систему осуществляется по следующей схеме:

ECTS	A+	A	A-	B+	В	В-	C+	С	C-	D+	D	D-	Е	FX	F
Баллы	96- 100	93- 95	90- 92	87- 89	83- 86	80- 82	76- 79	73- 75	70- 72	66- 69	63- 65	60- 62	50- 59	25- 49	0-24
	отлично			хорошо			удовлетворительно				неудо	влетв.			

4. Вопросы к зачету по дисциплине «Статистические методы анализа данных»

Полный перечень вопросов

по дисциплине "Статистические методы анализа данных"

1. Назовите основные типы прикладных целей исследования зависимостей.

- 2. Перечислите типовые задачи одномерного и многомерного анализа данных.
- 3. Что понимается под терминами "Data Mining", "Web Mining".
- 4. Назовите разделы многомерного статистического анализа, которые используются в задачах анализа зависимостей при различных комбинациях типов факторов.
- 5. Назовите основные этапы статистического исследования зависимостей.
- 6. Что обозначают термины "пассивный" и "активный" эксперимент.
- 7. Почему этап построения зависимостей под названием "определение класса допустимых решений" называют также этапом параметризации модели.
- 8. Что означает понятие "линейная по параметрам регрессионная модель".
- 9. Какова история происхождения термина "Регрессионный анализ".
- 10. Перечислите известные Вам методы оценивания параметров линейных регрессионных моделей.
- 11. Что понимается под термином "структура" модели.
- 12. Как Вы понимаете термин "адекватность" модели.
- 13. Что означает термин "линейная оценка".
- 14. Какими свойствами обладает наилучшая линейная оценка.
- 15. Назовите предположения, которые используются в теореме Гаусса-Маркова.
- 16. Для чего в теореме Гаусса-Маркова используется предположение А3: rg(X) = m.
- 17. Для чего в теореме Гаусса-Маркова используется предположение A1: $E(\varepsilon) = 0$.
- 18. Если ошибки наблюдения распределены по нормальному закону, то по какому закону распределены НЛО оценки параметров линейной регрессионной модели и почему.
- 19. Что означает термин "интервальное оценивание" параметров модели.
- 20. Как запишется гипотеза о проверке незначимости параметра.
- 21. Как запишется гипотеза о проверке незначимости регрессии.
- 22. Дайте толкование выражения "несферические возмущения".
- 23. Как можно найти (оценить) неизвестный параметр (коэффициент) автокорреляции ошибок наблюдений.
- 24. Что означает термин "мультиколлинеарность".
- 25. Что означает термин "проверка структурных изменений".
- 26. Как обнаружить аномальное наблюдение, используя "правило трех сигм".
- 27. Перечислите основные меры измерения эффекта мультиколлинеарности.
- 28. Какие меры измерения эффекта мультиколлинеарности свободны от влияния масштаба факторов.
- 29. Обобщенный МНК и ридж-оценивание это одно и то же?
- 30. Какова история происхождения термина "ридж-оценки".
- 31. Чем можно руководствоваться при выборе параметра λ в процедуре ридж-оценивания.
- 32. Смещенными или несмещенными являются ридж-оценки.
- 33. Какое свойство ридж-оценок можно считать главным и почему.
- 34. Как оценить число главных компонент.
- 35. Для чего ведется анализ геометрической структуры исходных данных.
- 36. В каких целях используются корреляционные поля. Что это за понятие.
- 37. Что понимается под термином "полная модель".
- 38. Что означает термин "ошибка спецификации модели".
- 39. К каким последствиям приводят те или иные ошибки спецификации модели.
- 40. Перечислите критерии качества моделей, основанные на использовании одной выборки.
- 41. Что понимается под термином "внешние критерии" качества моделей.
- 42. Почему предпочтительнее использовать симметричные внешние критерии нежели несимметричные.
- 43. Назовите несколько (два три) внешних критериев, относящихся к группе "критерии точности".
- 44. Назовите несколько (два три) внешних критериев, относящихся к группе "критерии согласованности".
- 45. Как вводится так называемый "критерий регулярности".

- 46. Что понимается под помехоустойчивостью внешних критериев.
- 47. Почему абсолютно помехоустойчивый критерий получил такое название.
- 48. Если наблюдений не очень много, то какой критерий качества моделей целесообразно использовать при выборе модели оптимальной сложности.
- 49. Опишите в общих чертах многорядный комбинаторный алгоритм.
- 50. Как сказывается влияние латентных факторов на поведение отклика системы.
- 51. По каким причинам и на каких этапах исследования исследователь вынужден возвращаться на более ранние этапы исследования зависимости.
- 52. Назовите причины, по которым отклик системы считается случайной величиной.
- 53. Покажите, что НЛО оценка параметров линейной регрессионной модели является несмещенной.
- 54. Покажите на простом примере, что матрица X^TX будет бесконечно возрастать при стремлении числа наблюдений к ∞ .
- 55. Покажите, что дисперсия НЛО оценки равна $D(\hat{\theta}) = \sigma^2 (X^T X)^{-1}$.
- 56. Покажите, что если P матрица проектирования на Ω ; где $\Omega = R[X]$ пространство образов, порождаемое столбцами матрицы X, то $P^2 = P$.
- 57. Покажите, что если P матрица проектирования на Ω ; где $\Omega = R[X]$ пространство образов, порождаемое столбцами матрицы X, то $(I-P)^2 = I-P$.
- 58. Покажите, что если P- матрица проектирования на Ω ; где $\Omega = R[X]$ пространство образов, порождаемое столбцами матрицы, то $(I_n P)$ матрица ортогонального проектирования на Ω^{\perp} .
- 59. Покажите, что поскольку $y = \hat{y} + \hat{e}$, то $y^T y = \hat{y}^T \hat{y} + \hat{e}^T \hat{e}$, где $\hat{y} = Py$, $\hat{e} = (I P)y$.
- 60. Покажите, что $\hat{e}^T X = 0$, где \hat{e} остатки, X матрица наблюдений.
- 61. Получите выражение для оценки неизвестной дисперсии σ^2 по методу максимального правдоподобия.
- 62. Получите выражение для оценки неизвестной дисперсии σ^2 по параллельным наблюдениям.
- 63. Как проверить незначимость параметра линейной регрессионной модели.
- 64. Покажите, что в модели, состоящей только из свободного члена, МНК оценка этого параметра равна среднему значению отклика по выборке.
- 65. Что понимается под доступным обобщенным методом наименьших квадратов.
- 66. Получите выражение для ковариационной матрицы ошибок наблюдений, если известно, что они описываются процессом авторегресии первого порядка.
- 67. Каким недостатком обладает Тест Дарбина-Уотсона.
- 68. Покажите, что в модели, содержащей свободный член, сумма остатков $e_i = y_i \hat{y}_i$ равна нулю.
- 69. Что позволяет обнаружить проведенный анализ остатков.
- 70. Какие наблюдения считаются "плохо влияющими".
- 71. Какое наблюдение можно принять за "точку разбалансировки".
- 72. Покажите, что при усилении эффекта мультиколлинеарности дисперсия оценок параметров линейной регрессионной модели может бесконечно возрастать.
- 73. Как освободить некоторые меры измерения эффекта мультиколлинеарности от влияния масштаба факторов.
- 74. Как узнать какие именно входные факторы ответственны за возникновение эффекта мультиколлинеарности.
- 75. Назовите недостатки и достоинства максимальной парной сопряженности как меры измерения мультиколлинеарности.
- 76. Назовите недостаток максимальной сопряженности как меры измерения мультиколлинеарности.
- 77. Покажите, что в среднем норма оценок параметров регрессионной модели при усилении эффекта мультиколлинеарности (например, при стремлении минимального собственного числа к 0) стремится к бесконечности.

- 78. Покажите, что ридж-оценка параметров линейной регрессионной модели является линейным преобразованием МНК оценки.
- 79. Какими свойствами должны обладать так называемые главные компоненты.
- 80. Объясните почему коэффициент детерминации при добавлении в модель регрессоров ведет себя как возрастающая функция от числа регрессоров.
- 81. Если для одной модели $R^2 = 0.5$, а для второй $R^2 = 0.75$, то во сколько раз остаточная сумма квадратов для второй модели меньше остаточной суммы квадратов первой модели.
- 82. Поясните, почему можно считать, что адекватными могут быть признаны многие модели.
- 83. Покажите, что в случае "недобора" регрессоров соответствующие компоненты вектора параметров оцениваются смещено.
- 84. Поясните, почему следует ожидать, что графики зависимостей внешних критериев качества моделей от числа включенных в модель регрессоров, будут иметь минимум.
- 85. Дайте интерпретацию гипотезы о структурных изменениях с позиции использование внешних критериев.
- 86. Как вводится субидеальный критерий стабильности на основе повторных наблюдений.
- 87. Назовите основные свойства оператора выметания. Какова оптимальная последовательность выметаний.
- 88. Что представляют собой алгоритмы включения и исключения.
- 89. Эффективный алгоритм построения всех регрессий. Дать описание алгоритма.
- 90. Многорядный комбинаторный алгоритм. Дать описание алгоритма.
- 91. Внешние критерии качества модели. Обосновать необходимость их использования. Классификация. Ввести и описать 6 критериев.
- 92. Внутренние критерии качества модели. Вывести критерий Мэллоуса.
- 93. Выбор наилучшей модели. К каким последствиям приводят ошибки спецификации модели типа "недобор" или "перебор" регрессоров. Показать выкладками.
- 94. Выбор общего вида функции регрессии (структуры модели). Использование априорной информации, предварительный анализ геометрической структуры исходных данных, учет требований гладкости.
- 95. Гетероскедастичность возмущений. Проверка данных на гетероскедастичность (тест Гольдфельда-Квандтона).
- 96. Гетероскедастичность возмущений. Проверка данных на гетероскедастичность (обобщение теста Гольдфельда-Квандтона).
- 97. Наилучшие линейные оценки (НЛО). Теорема Гаусса-Маркова (с доказательством).
- 98. Обобщенный МНК.
- 99. Оценивание неизвестной дисперсии ошибки наблюдения.
- 100. Оценивание параметров в модели регрессии при наличии линейных ограничений.
- 101. Оценивание параметров в условиях мультиколлинеарности. Меры измерения мультиколлинеарности. Как определить какие факторы ответственны за возникновение мультиколлинеарности.
- 102. Оценивание параметров в условиях повторных наблюдений.
- 103. Оценивание параметров регрессионной модели по методу максимального правдоподобия (ММП).
- 104. Помехоустойчивость внешних критериев.
- 105. Проверка гипотез и внешние критерии качества модели.
- 106. Проверка структурных изменений. Формулирование гипотезы и ее проверка.
- 107. Ридж-оценки неизвестных параметров и их свойства.
- 108. Свойства МНК оценки параметров линейной регрессионной модели.
- 109. Совместное и раздельное интервальное оценивание параметров линейных регрессионных моделей.

Федеральное государственное бюджетное образовательное учреждение высшего образования «Новосибирский государственный технический университет»

Кафедра теоретической и прикладной информатики

Паспорт расчетно-графического задания (работы)

по дисциплине «Статистические методы анализа данных», 7 семестр

1. Методика оценки

При выполнении расчетно-графического задания (работы) студенты должны провести полный цикл исследований по построению регрессионной зависимости по имеющимся экспериментальным данным.

В перечень исследований как обязательные части должны входить:

- 1. проверка данных на мультиколлинеарность;
- 2. проверка данных на гетероскедастичность (предположительно, что чем дальше от центра эксперимента проведено наблюдение, то возможно дисперсия его больше);
- 3. проверка данных на автокорреляцию (упорядоченность наблюдений по своим номерам считать упорядоченностью по времени);
- 4. выбор предварительного состава регрессоров с использованием корреляционных полей. В качестве регрессоров-кандидатов предположительно могут выступать: свободный член, сами факторы, их взаимодействия (двух-трех факторов), квадраты факторов;
- 5. выбор модели оптимальной сложности с использованием критериев Мэллоуса, скорректированного коэффициента детерминации, внешних критериев;
- 6. проверка адекватности выбранной модели с использованием повторных наблюдений (последние 6 наблюдений выборки), по которым необходимо будет вычислить оценку дисперсии наблюдений;
- 7. построение графиков остатков в различных координатах (по номеру наблюдений, по факторам, по отклику);
- 8. определение, опираясь на построенную модель, точки в факторном пространстве, имеющей максимальное значение математического ожидания отклика. Вычисление для этой точки доверительного интервала. Координаты такой точки не обязательно должны совпадать с какой-либо точкой из имеющихся в таблице наблюдений.

Оцениваемые позиции: части 1-8.

2. Критерии оценки

- Работа считается не выполненной, если большинство частей работ не выполнены, оценка составляет 1-2 баллов.
- Работа считается выполненной на пороговом уровне, если части РГЗ(Р) выполнены

формально: не проведен анализ данных на гетероскедастичность, автокорреляцию, мультиколлинеарность. Оценка составляет 3-5 баллов.

- Работа считается выполненной **на базовом** уровне, если анализ задачи выполнен в полном объеме, однако структура модели подобрана неверно, оценка составляет _6- баллов.
- Работа считается выполненной **на продвинутом** уровне, если анализ данных выполнен в полном объеме, структура модели подобрана верно, оценка составляет _10-12___ баллов.

3. Шкала оценки

В общей оценке по дисциплине баллы за РГЗ(Р) учитываются в соответствии с правилами балльно-рейтинговой системы, приведенными в рабочей программе дисциплины.

4. Примерный перечень тем РГЗ(Р)

РГЗ по дисциплине является типовым. Перечень разделов определен в п.1. Экспериментальные данные представляются в виде таблицы наблюдений типа "входвыход" в формате xlsx. Номер варианта задания (v.1, v.2,...) соответствует порядковому номеру студента в списке группы.

Общие правила выставления оценки по дисциплине определяются балльно-рейтинговой системой, приведенной в рабочей программе дисциплины.

На основании приведенных далее критериев можно сделать общий вывод о сформированности компетенций ОПК.1, ОПК.2, ПК.3/ПК, ПК.8.В/ПК, за которые отвечает дисциплина, на разных уровнях.