«

РАБОЧАЯ ПРОГРАММА УЧЕБНОЙ ДИСЦИПЛИНЫ Нанотехнологии и наноматериалы

: 18.03.02 - ;

: 3, : 6

-	•	,
		6
1 ()	3
2		108
3	, .	63
4	, .	36
5	, .	0
6	, .	18
7	, .	10
8	, .	2
9	, .	7
10	, .	45
11	, ,)	
12		

. .

		1.1
Компетенция ФГОС: ПК.13 готовность изучать научно-техническую инфо		
отечественный и зарубежный опыт по тематике исследований; <i>в части сле</i>	дующих результатов	
обучения:		
1		
Компетенция ФГОС: ПК.14 способность применять современные методы и		
технологических процессов и природных сред, использовать компьютерны научно-исследовательской работе; в части следующих результатов обучени		
	ш.	
5.		
2.		
		2.1
(
,		
, , , ,		
.13. 1		
1.о современных тенденциях и перспективах развития нанотехнологического	;	;
материаловедения		
2. научные принципы, лежащие в основе физико-химических процессов	;	;
формирования нанообъектов, их взаимосвязи с основными свойствами наноматериалов и наносистем		
3.0 влиянии методов получения нанообектов на свойства образующихся		
структур	,	,
4. основные типы нанообъектов и наноматериалов, способы их классификации	•	
и области применения	,	,
.14. 5		
5. анализировать научную литературу и обоснованно выбирать нанообъекты и	:	:
методы их получения для реализации конкретных практических задач	,	
6.синтезировать наноразмерные частицы различными методами	;	;
7. описывать свойства нанообъетов и наносистем, классифицируя материалы	;	;
по отдельным признакам;		
8. применять основные законы естествознания для проведения экспериментов и обработки полученных результатов	;	;
и обработки получениям результатов		
3.		
		3.1
, ,		
: 6		
:		

1.	0	3	1, 2, 3, 4, 6, 7, 8	,
2. (OD) .	0	4	1, 2, 3, 4, 5, 6, 7, 8	,
3. (0D)	0	4	1, 2, 3, 4, 5, 6, 7, 8	,
4.	0	4	1, 2, 3, 4, 5, 6, 7, 8	,
5	0	6	1, 2, 3, 4, 5, 6, 7, 8	,

6. (1D)	0	6	1, 2, 3, 4, 5, 6, 7, 8	,
7.	0	5	1, 2, 3, 4, 5, 6, 7, 8	,
8. :	0	4	1, 2, 3, 4, 5, 6, 7, 8	,
				3.2
	, .			
: 6				
1.	4	6	1, 2, 3, 4, 5, 6, 7, 8	
2.	3	6	1, 2, 3, 4, 5, 6, 7, 8	
3.	3	6	1, 2, 3, 4, 5, 6, 7, 8	,

4.

	4.				
	: 6				
1			1, 2, 3, 4, 5, 6, 7, 8	5	1
	-		٠,		
		3:	[. (CD-RC]: OM)
2			1, 2, 3, 4, 5, 6, 7, 8	22	5
			-		
:	- ,	,	,	,	1 2 4
<u> </u>	, 2007 1	(CD-ROM)	1, 2, 3, 4, 5, 6,		
3			7, 8	18	1
	- 1	2 3 4:	, 2007 1	[] : (CD-ROM)
	" 241000 " - " / - 33, [2] .:	: " : http://elibrary.nstu	- ; [.: u.ru/source?bib_i	.]. d=vtls00017759	, - ,
		5.			
		-		,	. 5.1). 5.1
			-		
		e-mail;			
		e-mail;			
	6.				

(), ECTS. . 6.1.

: 6		
Подготовка к занятиям:	0	
, 2007 1 (CD-ROM)]:	
Лабораторная:	36	72
() " ::] .:	" ;
Контрольные работы:	4	8
() " [,20071 (CD-ROM)"]:	
Зачет:	10	20
() " [, 2007 1 (CD-ROM)"]:	

6.2

6.2

		/			
.13	1	+	+	+	
.14	5.	+	+	+	

1

7.

- 1. Фахльман Б. Д. Химия новых материалов и нанотехнологии: [учебное пособие] / Б. Фахльман; пер. с англ. Д. О. Чаркина, В. В. Уточниковой; под ред. Ю. Д. Третьякова, Е. А. Гудилина. - Долгопрудный, 2011. - 463 с., [20] л. ил. : ил., табл.
- 2. Кузнецов, Н.Т. Основы нанотехнологии [Электронный ресурс]: учебник / Н.Т. Кузнецов, В.М. Новоторцев, В.А. Жабрев, В.И. Марголин. — Эл. изд. — Электрон. текстовые дан. (1 файл pdf: 400 с.). — М.: БИНОМ. Лаборатория знаний, 2014. — (Учебник для высшей школы). — Систем. требования: Adobe Reader XI; экран 10'. - ISBN 978-5-9963-2378-4 - Режим доступа: http://znanium.com/catalog.php?bookinfo=541189 - Загл. с экрана.
- 3. Балабанов В. И. Нанотехнологии: правда и вымысел / Виктор Балабанов, Иван Балабанов. - М., 2010. - 380, [1] с. : ил.
- 4. Илюшин В. А. Физикохимия наноструктурированных материалов: учебное пособие / В. А. Илюшин; Новосиб. гос. техн. ун-т. - Новосибирск, 2013. - 105, [1] с. : ил.. - Режим доступа: http://elibrary.nstu.ru/source?bib id=vtls000180741

- **1.** Очарование нанотехнологии [Электронный ресурс] / У. Хартманн; пер. с нем. 3-е изд. (эл.). М.: БИНОМ. Лаборатория знаний, 2014. 173 с.: ил. (Нанотехнологии). ISBN 978-5-9963-1325-9. Режим доступа: http://znanium.com/catalog.php?bookinfo=477985 Загл. с экрана.
- **2.** Гусев А. И. Наноматериалы, наноструктуры, нанотехнологии / А. И. Гусев. М., 2007. 414 с. : ил.
- **3.** Шабанова Н. А. Химия и технология нанодисперсных оксидов : [учебное пособие для вузов по специальностям "Химическая технология неорганических веществ" и "Химическая технология тугоплавких неметаллических и силикатных материалов"] / Н. А. Шабанова, В. В. Попов, П. Д. Саркисов. М., 2007. 301 с. : схемы, табл.
- **4.** Пул Ч. Нанотехнологии : учебное пособие по направлению подготовки "Нанотехнологии" / Ч. Пул-мл., Ф. Оуэнс ; пер. с англ. под ред. Ю. И. Головина ; доп. В. В. Лучинина. М., 2006. 334 с. : ил.
- **5.** Батаев В. А. Материалы с нанокристаллической структурой : учебное пособие / В. А. Батаев, З. Б. Батаева ; Новосиб. гос. техн. ун-т. Новосибирск, 2007. 262, [1] с. : ил., схемы. Режим доступа: http://elibrary.nstu.ru/source?bib_id=vtls000086242. Инновационная образовательная программа НГТУ "Высокие технологии".
- 6. Чесноков В. В. Введение в курс органической химии. Технологии получения углеродсодержащих наноматериалов: учебное пособие по специальности "Инженерная экология" / В. В. Чесноков, М. Н. Тимофеева; Новосиб. гос. техн. ун-т. Новосибирск, 2008. 198, [1] с.: ил.. Режим доступа: http://elibrary.nstu.ru/source?bib_id=vtls000120297. Инновационная образовательная программа НГТУ «Высокие технологии».
- 7. Генералов М. Б. Криохимическая нанотехнология : [учебное пособие для вузов по специальности "Машины и аппараты химических производств" и "Автоматизированное производство химических предприятий"] / М. Б. Генералов. М., 2006. 325 с. : ил.
- **8.** Алымов М. И. Порошковая металлургия нанокристаллических материалов / М. И. Альмов ; Рос. акад. наук, Ин-т металлургии и материаловедения им. А. А. Байкова. М., 2007. 167, [1] с. : ил.
- 9. Суздалев И. П. Нанотехнология. Физико-химия нанокластеров, наноструктур и наноматериалов / И. П. Суздалев. М., 2006. 589 с. : ил.
- **10.** Андриевский Р. А. Наноструктурные материалы: учебное пособие для вузов по направлению подготовки дипломированных специалистов 651800 "Физическое материаловедение" / Р. А. Андриевский, А. В. Рагуля. М., 2005. 178, [9] с.: ил.
- **11.** Сергеев Γ . Б. Нанохимия : [учебное пособие [по направлению 020100 (510500) Химия и специальности 020101(011000) Химия] / Γ . Б. Сергеев. М., 2006. 333 с. : ил.
- 1. 36C HFTY: http://elibrary.nstu.ru/
- 2. ЭБС «Издательство Лань»: https://e.lanbook.com/
- 4. 9EC "Znanium.com": http://znanium.com/

5. :

8.

8.1

1. Введение в нанотехнологии [Электронный ресурс] : учебный мультимедийный компьютерный курс. - Саратов, 2007. - 1 электрон. опт. диск (CD-ROM). - Загл. с этикетки диска.

2. Изучение свойств нановолокнистого углерода и других материалов методом синхронного термического анализа: методические указания к выполнению лабораторной работы по курсу "Инструментальные методы анализа" для механико-технологического факультета по направлению 241000 "Энерго- и ресурсосберегающие процессы в химической технологии, нефтехимии и биотехнологии" / Новосиб. гос. техн. ун-т; [сост.: И. С. Чуканов и др.]. - Новосибирск, 2012. - 33, [2] с.: ил.. - Режим доступа: http://elibrary.nstu.ru/source?bib id=vtls000177594

8.2

- 1 Microsoft Office
- 2 Microsoft Windows

9.

1					
	(-	,	,	

1	Ohaus SPU-202	1, 2,
2	-101	
		3
3	-5300	
		1
4	PH- pH-150	
	_	2
5		
	US-1500S	2

Федеральное государственное бюджетное образовательное учреждение высшего образования «Новосибирский государственный технический университет»

Кафедра химии и химической технологии

"УТВЕРЖДАЮ"
ДЕКАН МТФ
к.т.н., доцент В.В. Янпольский
΄Γ.

ФОНД ОЦЕНОЧНЫХ СРЕДСТВ

УЧЕБНОЙ ДИСЦИПЛИНЫ

Нанотехнологии и наноматериалы

Образовательная программа: 18.03.02 Энерго- и ресурсосберегающие процессы в химической технологии, нефтехимии и биотехнологии, профиль: Основные процессы химических производств и химическая кибернетика

1. Обобщенная структура фонда оценочных средств учебной дисциплины

Обобщенная структура фонда оценочных средств по дисциплине «Нанотехнологии и наноматериалы» приведена в Таблице.

Таблица

			Этапы оценки компетенций			
Формируемые компетенции	Показатели сформированности компетенций (знания, умения, навыки)	Темы	Мероприятия текущего контроля (курсовой проект, РГЗ и др.)	Промежуточная аттестация (экзамен)		
ПК.13/НИ готовность изучать современную отечественную и зарубежную научнотехническую информацию	з1. знать физико-химические свойства функциональных наноматериалов и основные методы их синтеза	Введение в нанохимию и нанотехнологию. История возникновения и основные этапы развития нанотехнологий. Общая характеристика нанотехнологий приготовления (0D) нульмерных частиц. Физические и химические методы получения наноразмерных частиц металлов. Основы зонной теории твердых тел и технология приготовления (0D) нульмерных полупроводниковых частиц. Коллоидные квантовые точки и квантовые размерные эффекты. Нанообъекты как основа новых лекарств и систем их направленной доставки. Золь-гель технология как способ получения наноразмерных оксидных порошков из алкоксидов металлов и водных растворов неорганических солей. Темплатный синтез и контролирование структуры нульмерных наночастиц. Общая характеристика нанотехнологий приготовления (1D) одномерных протяженных структур. Квазиодномерные и нанотубулярные протяженные структуры углерода, способы получения, особенности строения и свойства. Анодное окисление и гидротермальная обработка как способы получения нанокристаллических одномерных структур. Строение продуктов синтеза, свойства и области применения. Общая характеристика способов получения наноструктурных материалов. Методы интенсивной пластической деформации. Будущее нанотехнологий: ожидания и	Отчеты по лабораторным работам (см. комплект для лабораторных работ), контрольная работа (см. паспорт контрольной работы)	Зачет, общий перечень вопросов с 1 по 30 (см. паспорт зачета)		

	1			
		риски. Нанобиобезопасность.		
		Лабораторные работы: Синтез		
		и оптические свойства		
		наночастиц золота. Получение		
		наночастиц серебра и		
		определение их коэффициента		
		экстинции. Синтез наночастиц		
		феррита цинка. Определение		
		критической концентрации мицеллообразования		
		темплатообразующего ПАВ.		
		Синтез "Пирофорного железа".		
		Синтез магнитной жидкости.		
	_			
ПК.14/НИ	у5. уметь применять	Введение в нанохимию и	Отчеты по	Зачет, общий
способность	современные	нанотехнологию. История	лабораторным работам (см.	перечень вопросов с 1 по 30 (см. паспорт
применять современные	методы исследования при	возникновения и основные этапы развития	раоотам (см. комплект для	зачета)
методы	изучении	нанотехнологий.	лабораторных	sa iera)
исследования	наноматериалов	Общая характеристика	работ),	
технологических		нанотехнологий	контрольная	
процессов и		приготовления (0D)	работа (см.	
природных сред,		нульмерных частиц.	паспорт	
использовать		Физические и химические	контрольной	
компьютерные средства в научно-		методы получения наноразмерных частиц	работы)	
исследовательской		металлов. Основы зонной		
работе		теории твердых тел и		
F		технология приготовления		
		(0D) нульмерных		
		полупроводниковых частиц.		
		Коллоидные квантовые точки		
		и квантовые размерные		
		эффекты. Нанообъекты как основа новых лекарств и		
		систем их направленной		
		доставки. Золь-гель		
		технология как способ		
		получения наноразмерных		
		оксидных порошков из		
		алкоксидов металлов и водных		
		растворов неорганических солей. Темплатный синтез и		
		контролирование структуры		
		нульмерных наночастиц.		
		Общая характеристика		
		нанотехнологий		
		приготовления (1D)		
		одномерных протяженных		
		структур. Квазиодномерные и нанотубулярные протяженные		
		структуры углерода, способы		
		получения, особенности		
		строения и свойства. Анодное		
		окисление и гидротермальная		
		обработка как способы		
		получения		
		нанокристаллических одномерных структур.		
		Строение продуктов синтеза,		
		свойства и области		
		применения. Общая		
		характеристика способов		
		получения наноструктурных		
		материалов. Методы		
		интенсивной пластической деформации. Будущее		
<u> </u>		деформации. Будущее		

нанотехнологий: ожидания и риски. Нанобиобезопасность.	
Лабораторные работы: Синтез	
и оптические свойства	
наночастиц золота. Получение	
наночастиц серебра и	
определение их коэффициента	
экстинции. Синтез наночастиц	
феррита цинка. Определение	
критической концентрации	
мицеллообразования	
темплатообразующего ПАВ.	
Синтез "Пирофорного железа".	
Синтез магнитной жидкости.	

2. Методика оценки этапов формирования компетенций в рамках дисциплины.

Промежуточная аттестация по дисциплине проводится в 6 семестре - в форме зачета, который направлена на оценку сформированности компетенций ПК.13/НИ, ПК.14/НИ.

Зачет проводится в устной форме, по билетам. Общий перечень вопросов к зачету, позволяющих оценить показатели сформированности соответствующих компетенций, приведен в паспорте для зачета.

Кроме этого, сформированность компетенций проверяется при проведении мероприятий текущего контроля, указанных в таблице раздела 1. В 6 семестре обязательным этапом текущей аттестации является проведение контрольной работы. Требования к выполнению контрольной работы, состав и правила оценки сформулированы в паспорте для контрольной работы.

Общие правила выставления оценки по дисциплине определяются балльно-рейтинговой системой, приведенной в рабочей программе дисциплины.

На основании приведенных далее критериев можно сделать общий вывод о сформированности компетенций ПК.13/НИ, ПК.14/НИ, за которые отвечает дисциплина, на разных уровнях.

3. Общая характеристика уровней освоения компетенций

Ниже порогового. Уровень выполнения работ не отвечает большинству основных требований, теоретическое содержание курса освоено частично, пробелы могут носить существенный характер, необходимые практические навыки работы с освоенным материалом сформированы недостаточно, большинство предусмотренных программой обучения учебных заданий не выполнены или выполнены с существенными ошибками.

Пороговый. Уровень выполнения работ отвечает большинству основных требований, теоретическое содержание курса освоено частично, но пробелы не носят существенного характера, необходимые практические навыки работы с освоенным материалом в основном сформированы, большинство предусмотренных программой обучения учебных заданий выполнено, некоторые виды заданий выполнены с ошибками.

Базовый. Уровень выполнения работ отвечает всем основным требованиям, теоретическое содержание курса освоено полностью, без пробелов, некоторые практические навыки работы с освоенным материалом сформированы недостаточно, все предусмотренные программой обучения учебные задания выполнены, качество выполнения ни одного из них не оценено минимальным числом баллов, некоторые из выполненных заданий, возможно, содержат ошибки.

Продвинутый. Уровень выполнения работ отвечает всем требованиям, теоретическое содержание курса освоено полностью, без пробелов, необходимые практические навыки работы с освоенным материалом сформированы, все предусмотренные программой обучения учебные задания выполнены, качество их выполнения оценено числом баллов, близким к максимальному.

Федеральное государственное бюджетное образовательное учреждение высшего образования «Новосибирский государственный технический университет» Кафедра химии и химической технологии

Паспорт зачета

по дисциплине «Нанотехнологии и наноматериалы», 6 семестр

1. Методика оценки

Зачет проводится в устной форме, по билетам. Билет состоит из трех теоретических вопросов (список вопросов приведен ниже, п. 4). Билет формируется по следующему правилу: первый вопрос выбирается из диапазона вопросов 1-10, второй вопрос из диапазона вопросов 1-20, третий вопрос из диапазона 21-30. Первый из вопросов оценивается 200 до 200 д

Форма билета для зачета

НОВОСИБИРСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ Факультет МТФ

Билет № <u>3</u> к экзамену по дисциплине «Нанотехнологии и наноматериалы»

- 1. Способы получения наночастиц «сверху вниз» и «снизу вверх». Общая характеристика и особенности проведения процессов.
- 2. Золь-гель синтез как способ приготовления нульмерных наночастиц оксидов металлов: отличие золь-гель технологии от классических методов осаждения, основные стадии процесса, характеристика стадий с точки зрения изменения специфических структурно-морфологических параметров, существенно влияющих на свойства формирующегося оксидного порошка.
- 3. Гидротермальный синтез одномерных протяженных наноструктур: общая характеристика, схема простейшего автоклава. Технология приготовления нанотубулярных и квазиодномерных протяженных структур на основе TiO₂. Структурные особенности и физико-химические свойства продуктов.

Утверждаю: зав. кафедрой XXT _	H.Ф. Уваров	
-	(подпись)	
		(дата)

2. Критерии оценки

• Ответ на билет для зачета считается **неудовлетворительным**, если студент при ответе на вопросы не дает определений основных понятий, не способен охарактеризовать физико-химических процессов, лежащих в основе нанотехнологии, не может

аргументировать выбор технологии для решения конкретных практических задач, оценка составляет менее 10 баллов.

- Ответ на билет для зачета засчитывается на **пороговом** уровне, если студент при ответе на вопросы дает определения основных понятий, но способен охарактеризовать лишь отдельные физико-химические процессы, лежащие в основе нанотехнологии, и привести некоторые аргументы выбора технологии для решения конкретных практических задач, оценка составляет 10-14 баллов.
- Ответ на билет для зачета засчитывается на **базовом** уровне, если студент при ответе на вопросы дает определения основных понятий, способен полностью охарактеризовать физико-химические процессы, лежащие в основе нанотехнологии, привести некоторые аргументы выбора технологии для решения конкретных практических задач, а также показать между ними причинно-следственную связь, оценка составляет <u>15 19</u> баллов.
- Ответ на билет для зачета засчитывается на **продвинутом** уровне, если студент при ответе на вопросы уверенно дает определения основных понятий, способен полностью охарактеризовать физико-химические процессы, лежащие в основе нанотехнологии, обоснованно привести аргументы выбора технологии для решения конкретных практических задач и показать между ними причинно-следственную связь, оценка составляет 20 баллов.

3. Шкала оценки

Зачет считается сданным, если сумма баллов по всем заданиям билета составляет не менее 10 баллов (из 20 возможных).

В общей оценке по дисциплине баллы за зачет учитываются в соответствии с правилами балльно-рейтинговой системы, приведенными в рабочей программе дисциплины.

4. Перечень вопросов к зачету по дисциплине «Нанотехнологии и наноматериалы»

- 1. Основные понятия и определения: нанотехнология, нанокластер, наночастица, нанокристаллит, наноструктура, наноструктурированный и наноструктурный материалы.
- 2. Мультимедийность и междисциплинарность нанотехнологий. Основные этапы становления и современное развитие.
- 3. Способы получения наночастиц «сверху вниз» и «снизу вверх». Общая характеристика и особенности проведения процессов.
- 4. Гомогенная нуклеация: условия возникновения новой фазы, изменение энергия Гиббса и поверхностной энергии новой фазы, движущая сила нуклеации. Стадии доращивания. Рост, ограниченный диффузией, и рост, ограниченный поверхностными процессами. Способы обеспечения ограниченного диффузионного роста.
- 5. Наноразмерный эффект и его влияние на основные физико-химические характеристики: точку плавления и постоянные решетки, электропроводность, механические, оптические, сегнетоэлектрические и магнитные свойства материалов.
- 6. Причины возникновения наноразмерного эффекта. Поверхностный плазмонный резонанс, гигантское комбинационного рассеяние, поверхностный плазмонный поляритон. Закон Холла-Петча.
- 7. Общая характеристика физических и химических способов получения нульмерных наночастиц металлов. Достоинства и недостатки методов.

- 8. Синтез водных растворов наночастиц золота цитратным способом. Уравнения химических реакций. Структурные превращения и изменение окраски. Оптические спектры поглощения. Уравнение Бугера Ламберта Бера. Коэффициент экстинции. Биосенсоры на основе наночастиц золота, устройство и принцип действия.
- 9. «Квантовые точки»: определение, причина появление термина. Квантово-размерный эффект, длина волны де-Бройля, «синий сдвиг». Связь размерности коллоидных квантовых точек с окраской дисперсных систем. Люминесценция: флуоресценция и фосфоресценция.
- 10. Кинетически-ограниченный синтез «квантовых точек» в микроэмульмиях.
- 11. Синтез «квантовых точек» по типу «ядро в оболочке». Условия получения полупроводниковых нанокристаллитов: источники, прекурсоры, растворители, стадии приготовления.
- 12. Модификация поверхности квантовых точек. Преимущества коллоидных квантовых точек с модифицированной поверхностью. Основные области применения. «Квантовые точки» в качестве маркеров современной диагностики онкологических заболеваний. Сравнительная характеристика «квантовых точек» с флуорофорами.
- 13. Золь-гель синтез как способ приготовления нульмерных наночастиц оксидов металлов: отличие золь-гель технологии от классических методов осаждения, основные стадии процесса, характеристика стадий с точки зрения изменения специфических структурноморфологических параметров, существенно влияющих на свойства формирующегося оксидного порошка.
- 14. Характеристика основных подходов золь-гель технологии. Схемы реакций гидролиза и поликонденсации при алкоксидном получении золей и при формировании гидрозолей из водных растворов неорганических солей металлов. Достоинства и недостатки способов. Условия образования сложных многокомпонентных оксидных систем.
- 15. Электрохимический способ получения гидрозолей. Схема реакций гидролиза и поликонденсации. Стадии процесса. Особенности технологии: влияние концентрации исходных растворов, структурирование коллоидных частиц, модификация глобулярной поверхности, формирование многокомпонентных систем. Достоинства и недостатки метода.
- 16. Темплатный синтез наноструктурированных объемных материалов. Характеристика основных стадий технологии и схема проведения процесса. Соединения, используемые в качестве шаблонов; особенности их строения и поведение в растворах. Требования, предъявляемые к структуроформирующим веществам.
- 17. Мицеллообразующие ПАВ. Критическая концентрация мицеллообразования и её экспериментальное определение. Точка Крафта. Факторы, влияющие на повышение и понижение точки Крафта. Структурные особенности и физико-химические свойства материалов, получаемых с помощью коллоидных ПАВ. Основные области применения и перспективность технологий темплатного синтеза.
- 18. Нанотубулярные и квазиодномерные протяженные структуры: определение, типы одномерных структур, строение. Углеродные нанотрубки: многослойные и однослойные протяженные структуры, типы «сверток». Структура углеродных нанотрубок: вектор, угол и индексы хиральности, дефектность и механизмы формирования.
- 19. Методы синтеза углеродных нанотрубок в зависимости от способа испарения углерода: термическое и лазерное распыление, каталитический крекинг углеводородов, электрохимический синтез. Условия проведения процессов и характеристика продуктов. Достоинства и недостатки методов. Способы очистки от примесей и разделения одностенных углеродных нанотрубок с различным типом «свертки».

- 20. Специфика физико-химических свойств углеродных нанотрубок: механических (модуль упругости, прочность на разрыв, плотность, хрупкость); электронных (проводимость, удельное сопротивление, плотность тока, полевая эмиссия); теплопроводности; удельной поверхности.
- 21. Модификация углеродных нанотрубок как способ создания новых функциональных и конструкционных материалов. Основные способы модификации и уникальность композиционных свойств.
- 22. Одномерные протяженные наноструктуры на основе оксидов металлов: общая характеристика способов получения, особенности темплатного синтеза. Метод анодного окисления (травления). Способы регулирования морфологических параметров нанотрубок: диаметра, длины, толщины стенок, шероховатости, степени упорядочения.
- 23. Гидротермальный одномерных протяженных синтез наноструктур: общая характеристика, схема простейшего автоклава. Технология приготовления нанотубулярных и квазиодномерных протяженных структур на основе ТіО2. Структурные особенности и физико-химические свойства продуктов.
- 24. Реакции ионного замещения как основной способ модификации слоистых протяженных наноструктур. Поверхностная функционализация. Стабильность нанотрубок и нановолокон. Основные области применения.
- 25. Общая характеристика физико-химических основ получения наноструктурных материалов. Основные понятия и определения: деформация, виды деформаций (упругая, пластическая, сдвига), зерно, границы зерен (высокоугловые, малоугловые).
- 26. Методы интенсивной пластической деформации (ИПД). Общая характеристика и особенности проведения процессов. Инновационный потенциал методов интенсивной пластической деформации. Примеры создания методами ИПД материалов, конкурентоспособных на мировом рынке.
- 27. Деформация кручением под высоким давлением (КВД). Принципиальная схема установки, принцип действия, исходные материалы. Физико-химические свойства продуктов (микротвердость, плотность, размер и границы зерен), получаемых данным методом.
- 28. Метод деформации равноканальным угловым прессованием (РКУП). Принципиальная схема установки, принцип действия, исходные материалы. Влияние исходной микроструктуры, химического и фазового составов обрабатываемых материалов (металлов, сплавов, интермедиатов, полупроводников, металлокерамических композитов) на свойства получаемых продуктов.
- 29. Нанобиобезопасность. Преимущества и риски нанотехнологий. Изменение свойств материалов при переходе к наноразмерам. Наиболее распространенные типы наночастиц и факторы, обуславливающие их потенциальную токсичность. Функционализация поверхности наночастиц.
- 30. Пути и глубина проникновения наночастиц в человеческий организм (органы, ткани и клетки). Механизм воздействия. Взаимодействие наночастиц с клетками. Селективность поглощения наночастиц отдельными органами и скорость выведения наночастиц в зависимости от их размера.

Федеральное государственное бюджетное образовательное учреждение высшего образования «Новосибирский государственный технический университет» Кафедра химии и химической технологии

Паспорт контрольной работы

по дисциплине «Нанотехнологии и наноматериалы», 6 семестр

1. Методика оценки

Контрольная работа проводится по темам 3, 5–7 лекционного курса. Работа выполняется письменно и включает 8 заданий (каждое оценивается по 1.0 баллу). Пример варианта контрольной работы прилагается, п.4.

2. Критерии оценки

Каждое задание контрольной работы оценивается в соответствии с приведенными ниже критериями.

Контрольная работа считается **невыполненной**, если студент правильно отвечает на каждый из вопросов менее 50%, оценка составляет менее 4 баллов.

Работа выполнена на **пороговом** уровне, если студент правильно отвечает на каждый из вопросов $\sim 50\%$, оценка составляет 4-5 баллов.

Работа выполнена на **базовом** уровне, если студент правильно отвечает на каждый из вопросов более 50%, не допуская принципиальных ошибок, оценка составляет 6-7 баллов.

Работа считается выполненной **на продвинутом** уровне, если студент правильно отвечает на все вопросы, оценка составляет *8* баллов.

3. Шкала оценки

В общей оценке по дисциплине баллы за контрольную работу учитываются в соответствии с правилами балльно-рейтинговой системы, приведенными в рабочей программе дисциплины.

4. Пример варианта контрольной работы

- 1. Что называют «нанотехнологией»? Чем нанокристалл отличается от нанокристаллита?
- 2. Перечислите способы ограничения роста наночастиц при гомогенной нуклеации.
- 3. Какие частицы называют «нульмерными»? Перечислите технологии их приготовления.
- 4. Что называют коллоидными «квантовыми точками»? Перечислите преимущества коллоидных «квантовых точек» с модифицированной поверхностью.
- 5. Перечислите основные стадии золь-гель технологии. Назовите условия образования сложных многокомпонентных оксидных систем.
- 6. Перечислите требования, предъявляемые к структуроформирующим соединениям, используемым при темплатном синтезе.
- 7. Предложите наиболее эффективный способ разделения одностенных углеродных нанотрубок с различным типом «свертки».
- 8. В чем заключается инновационный потенциал методов интенсивной пластической деформации?

Составитель		Т.М. Зима
	(подпись)	
« »	2017 г.	

Федеральное государственное бюджетное образовательное учреждение высшего образования

«Новосибирский государственный технический университет» Кафедра химии и химической технологии

комплект

заданий для лабораторных работ

по дисциплине «Нанотехнологии и наноматериалы»

1. Методика оценки

Каждая из лабораторных работ оценивается 24 баллами. Аккуратность оформления работы оценивается $\underline{om\ 0\ do\ 4\ баллов}$, выполнение — $\underline{om\ 0\ do\ 10\ баллов}$, правильность расчетов (построение графических зависимостей) — $\underline{om\ 0\ do\ 4\ баллов}$, ответы на дополнительные вопросы — $\underline{om\ 0\ do\ 6\ баллов}$. Список дополнительных вопросов по каждой лабораторной работе приведен в п. 2.

2. Список дополнительных вопросов по лабораторным работам

Лабораторная работа №1, **Получение наночастиц серебра и определение их коэффициента** экстинкции

- 1. С помощью каких технологий можно получить наночастицы серебра?
- 2. Какие стадии синтеза выделяют при получении наночастиц серебра с помощью цитрат-ионов? Какую роль выполняют цитрат-ионы в данном методе?
- 3. Каким образом можно ограничить рост наночастиц серебра при получении их методом восстановления?
- 4. Почему водные растворы наночастиц серебра, полученные в присутствии цитрат-ионов и гидразина, имеют разную окраску?
- 5. Что называют коэффициентом экстинкции? Чем отличается коэффициент экстинкции серебра от коэффициентов экстинкции других металлов? Как изменяется коэффициент экстинкции с уменьшением размера наночастиц серебра?
- 6. Что понимают под явлениями «поверхностного поляритона» и «гигантского комбинационного рассеяния»? Где используют эти явления?
- 7. Что является антибактериальным агентов в водных растворах наночастиц серебра? Каков механизм действия этого антибактериального агента?
- 8. Где используют наночастицы серебра и с чем это связано?

Лабораторная работа №2, Синтез наночастиц феррита цинка

- 1. Какие соединения называют ферритами? Какими специфическими свойства они обладают?
- 2. Предложите способ получения ферритов на основе железа(III) методом осаждения. Опишите основные стадии процесса.
- 3. Почему при синтезе ферритов необходимо строго контролировать условия образования данного соединения?
- 4. Что называют наноразмерным эффектом? Как изменяются свойства феррита с уменьшением размера его частиц?
- 5. Где используют ферриты? Ответ обоснуйте на конкретном примере.

Лабораторная работа №3, **Определение критической концентрации мицеллообразования в** водном растворе поли-винилпирролидона

- 1. Какие соединения используют в качестве мицеллообразующих?
- 2. Что называют критической концентрацией мицеллобразования (ККМ)? Как можно экспериментально определить ККМ?
- 3. Какие факторы влияют на изменение ККМ?
- 4. Какую роль играют мицеллообразующие ПАВ в технологиях темплатного синтеза; перечислите основные принципы выбора темплатообразующих соединений и стадии проведения синтеза.
- 5. Охарактеризуйте свойства материалов, полученных с помощью технологий темплатного синтеза, и области их применения.