ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ

«НОВОСИБИРСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ»

Механико-технологический факультет Заочный факультет

УТВЕРЖДАЮ	УТВЕРЖДАЮ
Декан МТФ	Декан ЗФ
профессор, к.т.н. Буров Владимир Григорьевич	профессор, д.т.н. Темлякова Зоя Савельевна
"" Г.	"" г.
РАБОЧАЯ ПРОГРАММА УЧЕБІ Математическое моделирование те	, , ,

ООП: специальность 151002.65 Металлорежущие станки и инструменты

Шифр по учебному плану: ЕН.В.1.2

Факультет: заочный заочная форма обучения

Курс: 3 4, семестр: 6 7

Лекции: 4

Практические работы: - Лабораторные работы: 4

Курсовой проект: - Курсовая работа: - РГЗ: -

Самостоятельная работа: 92

Экзамен: - Зачет: 7

Всего: 100

Новосибирск

2011

20666/15102

Рабочая программа составлена на основании _Государственного образовательного стандарта высшего профессионального образования по направлению (специальности): 657800 Конструкторско-технологическое обеспечение машиностроительных производств. № 513 тех/дс от 28.02.2001)

ЕН.В.1.2, дисциплины по выбору студента

Рабочая программа обсуждена на заседании кафедры Проектирование технологических машин протокол № 4 от 17.05.2011

Программу разработал

профессор, д.т.н.

Подгорный Юрий Ильич

Заведующий кафедрой

доцент, к.т.н.

Иванцивский Владимир Владимирович

Ответственный за основную образовательную программу

доцент, к.т.н.

Иванцивский Владимир Владимирович

1. Внешние требования

Таблица 1.1

Шифр дисциплины	Содержание учебной дисциплины			
ЕН.В.1.2	Концептуальная записка по специальности 151002 - "Металлообрабатывающие станки и комплексы", дисциплина "Математическое моделирование технологических машин".	100		
	Общие положения по построению математической модели технических систем. Моделирование свободных и вынужденных колебаний технических систем.			

2. Особенности (принципы) построения дисциплины

Таблица 2.1

Особенности (принципы) построения дисциплины

Особенность	Содержание
(принцип)	
Основания для	Решение Ученого совета механико-технологического факультета от
введения	22.03.2006 (протокол № 3).
дисциплины в	
учебный план по	
направлению или	
специальности	
Адресат курса	Для студентов 4-го курса, обучающихся по специальности 151002 - "Металлообрабатывающие станки и комплексы".
Основная цель	Основная цель дисциплины состоит в раскрытии содержания и
(цели)	особенностей процесса моделирования и решения дифференциальных
дисциплины	уравнений с использованием новейших технологий обучения на базе
	современных средств вычислительной техники, программного
	обеспечения и пакета
Ядро дисциплины	Методика разработки математической модели поведения технологических
	машин. Свободные и вынужденные колебания.
Связи с другими	При изучении дисциплины у студента объективно возникает потребность
учебными	увязать в системном виде и на более высоком качественном уровне
дисциплинами	знания, полученные ранее при изучении таких фундаментальных
основной	общепрофессиональных и специальных дисциплин, как "Математика",
образовательной	"Физика", "Теоретическая механика", "Металлорежущие станки" и
программы	"Теория механизмов и машин".
Требования к	1. Для успешного освоения дисциплины студенту необходимы знания,
первоначальному	получаемые из курсов математики, физики, математических методов
уровню	оптимизации инженерных решений, теоретической механики, теории
подготовки	машин и механизмов, металлорежущих станков.
обучающихся	2. Владение программным продуктом MathCAD.
Особенности	Теоретический материал, контрольная и лабораторные работы тесно
организации	взаимосвязаны и построены с учетом следующих основных принципов:
учебного	соответствие целей и содержания требованиям ГОС на подготовку
процесса по	инженера; соответствие содержания всех видов учебных занятий
дисциплине	требованиям, предъявляемым к дисциплинам, связанным с построением
	моделей и их математическим описанием; использование проблемного

20666/15102

метода	а обучения	при выполнен	ии контр	ольной и .	лабораторных раб	бот;
обеспо	ечение высо	окого уровня са	мостояте.	льности сту	дентов при освое	нии
всех	разделов	дисциплины.	После	освоения	теоретического	И
практі	ического ма	териала студент	гы сдают	зачет.		

3. Цели учебной дисциплины

Таблица 3.1

После изучения дисциплины студент будет

	ния дисциплины студент будет
иметь	
представление	
1	роли математического моделирования механизмов при конструировании
	новых и исследованиях существующих конструкциях технологических
	машин.
2	типовых моделях, позволяющих на их основе проводить динамическое
	исследование механизмов технологических машин.
3	пакете прикладных программ, позволяющего наиболее рационально
	производить динамическое исследование механизмов технологических машин
4	достижениях науки и техники, передовом отечественном и зарубежном опыте
	в области построения моделей и их рационального использования.
5	целесообразности выбранной модели, переносе результатов исследований с
	дальнейшей его модернизацией или проектирования новой машины или
	механизма.
знать	
6	принципы построения моделей; способы математического описания.
7	решения определенного типа задач, применительно к технологическим
	машинам и их механизмам.
8	методы расчета частот свободных и вынужденных колебаний механизмов.
9	методы расчета форм колебаний.
уметь	
10	анализировать и оценивать качество конструкций узлов технологических
	машин.
11	проектировать сложные технические системы с учетом динамического
	характера поведения машины.
иметь опыт	
(владеть)	
12	конструирования и расчета основных узлов и элементов технологического
	оборудования с применением ЭВМ на базе привлечения современного
	программного продукта.
13	разработки математических моделей поведения объектов проектирования в
	условиях изменения внешних факторов.
	1 1

4. Содержание и структура учебной дисциплины

Лекционные занятия Таблица 4.1

(Модуль), дидактическая единица, тема	Часы	Ссылки на цели
Семестр: 6		
Дидактическая единица: Общие положения по построению математической		

модели технических систем		
Установочная лекция. Основы построения моделей механизмов	2	1, 4, 6
технологических машин. Основные понятия и стадии построения моделей		
технологических машин.		
Семестр: 7		
Дидактическая единица: Общие положения по построению математической		
модели технических систем		
Общие понятия о кинетической и потенциальной энергиях. Определение	0,4	7
кинетической энергии. Определение потенциальной энергии. Определение		
кинетической и потенциальной энергии применительно к конкретным		
механизмам технологических машин.		
Общие понятия жесткости элементов и механизмов. Определение	0,4	1, 4, 7
жесткости при последовательном, параллельном и смешанном		
соединениях. Жесткости, приведенные к какому - либо из элементов		
технологической машины. Конкретные примеры жесткостных		
характеристик стандартных элементов.		
Основные понятия об инерционно массовых характеристиках. Определение	0,4	3
моментов инерции масс аналитическим и экспериментальными методами.		
Определение инерционно массовых характеристик на ЭВМ. Определение		
приведенных моментов инерции масс.		
Дидактическая единица: Моделирование свободных и вынужденных		
колебаний технических систем		
Уравнение свободных колебаний системы с одной степенью свободы.	0,4	12, 13, 5,
Свободные колебания системы с двумя степенями свободы. Крутильные		6, 7, 8, 9
колебания. Уменьшение степеней свободы в расчетных схемах.		
Вынужденные колебания системы с одной степенью свободы.		
Вынужденные колебания системы с одной степенью свободы в случае		
периодической возмущающей силы. Критические скорости вращения		
валов.		
Матричные методы в расчетах собственных и вынужденных колебаний.	0,4	10, 11, 2,
Свободные колебания системы с конечным числом степеней свободы.		5
Вынужденные колебания системы с конечным числом степеней свободы.		

Лабораторная работа Таблица 4.2

(Модуль), дидактическая единица, тема	Учебная деятельность			Часы	Ссылки на цели
Семестр: 7					
Дидактическая единица: Общие					
положения по построению					
математической модели					
технических систем					
Определение жесткостных	Расчет	жесткости	элементов.	4	2, 6
характеристик элементов.	Определение	приведенных	значений		
	жесткостей.				

5. Самостоятельная работа студентов

Семестр- 7, Подготовка к зачету

На подготовку к зачету студенту отводится 5 часов.

Семестр- 7, Контрольные работы

<u>На выполнение контрольной работы (КР) студентам отводится 40 часов</u> самостоятельной работы.

Тематика контрольной работы - разработка расчетной модели и определение частотного спектра колебаний для привода.

Выполнение КР работы является одним из важнейших этапов конструкторской подготовки инженера. На нем систематизируются, углубляются знания, полученные ранее при изучении многих естественнонаучных, общетехнических и специальных дисциплин.

Основные цели этой работы, имеющей творческий характер, состоят в том, что она позволит студенту в полной мере овладеть методикой разработки математической модели, рассчитывать частотный спектр колебаний, определять режимы эксплуатации и активно влиять на конструктивные особенности привода; развить умение производить сложные инженерные расчеты; закрепить навыки конструирования с учетом упругих свойств привода с эффективным привлечением средств ВТ, приобретенные при выполнении предшествующих КП, и повысить эрудицию в конкретной области машиностроения.

Опыт, полученный при работе над КР, даст студенту возможность реально оценить свою способность к самостоятельному решению сложных практических задач и станет необходимым фундаментом для дальнейшего совершенствования по профилю избранной инженерной специальности.

Объективным критерием уровня знаний является качество выполнения КР работы, умение аргументированно обосновывать и отстаивать принятые технические решения, сравнивать их с альтернативными вариантами.

Расчетно-графическая работа включает конструктивную схему привода технологической машины (Математическое моделирование технологических машин: раб. программа и метод. указания / Ю.И. Подгорный. — Новосибирск: Изд-во НГТУ, 2003).

Расчетная схема редуктора значения геометрических параметров и инерционно массовых характеристик задается преподавателем. Студент должен разработать математическую модель привода, для чего необходимо определить моменты инерции масс и жесткости валов.

Семестр- 7, Подготовка к занятиям

На подготовку к занятиям студенту отводится 47 часов самостоятельной работы.

6. Правила аттестации студентов по учебной дисциплине

Зачет проводится в письменной форме. В билете содержится три вопроса. Для получения зачета по дисциплине студенту необходимо правильно ответить на два вопроса билета.

20666/15102

7. Список литературы

7.1 Основная литература

В печатном виде

- 1. Левин В. Е. Динамика машин : конспект лекций / В. Е. Левин, Л. Н. Патрикеев ; Новосиб. гос. техн. ун-т. Новосибирск, 2009. 136, [2] с. : ил.
- 2. Подгорный Ю. И. Анализ и синтез механизмов : учебное пособие / Ю. И. Подгорный, О.
- В. Максимчук, М. В. Лукин ; Новосиб. гос. техн. ун-т. Новосибирск, 2007. 101, [2] с. : ил.

В электронном виде

- 1. Левин В. Е. Динамика машин : конспект лекций / В. Е. Левин, Л. Н. Патрикеев ; Новосиб. гос. техн. ун-т. Новосибирск, 2009. 136, [2] с. : ил.. Режим доступа: http://www.ciu.nstu.ru/fulltext/textbooks/2009/levin.pdf
- 2. Подгорный Ю. И. Анализ и синтез механизмов: учебное пособие / Ю. И. Подгорный, О.
- В. Максимчук, М. В. Лукин; Новосиб. гос. техн. ун-т. Новосибирск, 2007. 101, [2] с. : ил..
- Режим доступа: http://www.ciu.nstu.ru/fulltext/textbooks/2007/2007_podgor.rar

7.2 Дополнительная литература

В печатном виде

- 1. Коловский М. З. Динамика машин / М. З. Коловский. Л., 1989. 262, [1] с. : ил.
- 2. Исследование и проектирование цикловых диаграмм технологических машин : [монография / Ю. А. Афанасьев и др. ; Новосиб. гос. техн. ун-т]. Новосибирск, 2004. 198 с. : ил., табл.
- 3. Подгорный Ю. И. Исследование и проектирование механизмов технологических машин : Монография / Новосиб. гос. техн. ун-т. Новосибирск, 2000. 190с. : ил.
- 4. Подгорный Ю. И. Исследование и выбор параметров при синтезе и эксплуатации механизмов технологических машин : [Монография] / Ю. И. Подгорный, Ю. А. Афанасьев, А. В. Кириллоов. Новосибирск, 2002. 195 с. : ил.

8. Методическое и программное обеспечение

8.1 Методическое обеспечение

В печатном виде

1. Математическое моделирование технологических машин : рабочая программа и методические указания для студентов МТФ направления 552900 (специальности 120200) и специальности 170600 всех форм обучения / Новосиб. гос. техн. ун-т; [сост. Ю. И. Подгорный]. - Новосибирск, 2003. - 13 с. : ил.

В электронном виде

1. Математическое моделирование технологических машин: рабочая программа и методические указания для студентов МТФ направления 552900 (специальности 120200) и специальности 170600 всех форм обучения / Новосиб. гос. техн. ун-т; [сост. Ю. И. Подгорный]. - Новосибирск, 2003. - 13 с.: ил.. - Режим доступа: http://www.library.nstu.ru/fulltext/metodics/2003/2563.rar

8.2 Программное обеспечение

1. Parametric Technology Corporation, MathCAD 14, Решение задач и анализ их результатов

9. Контролирующие материалы для аттестации студентов по дисциплине

Перечень вопросов, выносимых для итогового контроля по дисциплине:

- 1. Модели технологических машин. Этапы процесса моделирования. Определения.
- 2. Колебательные явления в машинах. Классификация колебательных процессов.
- 3. Гармонические колебания. Биения.
- 4. Малые колебания системы около положения устойчивого равновесия.
- 5. Потенциальная энергия системы.
- 6. Кинетическая энергия системы.
- 7. Диссипативная функция.
- 8. Приведение масс, моментов инерции и жесткостей.
- 9. Приведение вращающихся масс. Масса возвратно поступательно движущихся частей.
- 10. Приведение величины моментов инерции масс.
- 11. Приведение рассредоточенных масс.
- 12. Приведение жесткостей. Приведение жесткостей для сложных рычажных систем.
- 13. Свободные колебания системы. Уравнение колебаний системы машины, представленной одной степенью свободы
- 14. Свободные колебания приведенной модели машины, представленной двумя степенями свободы.
- 15. Крутильные колебания валов технологических машин с конечным числом степеней своболы.
- 16. Уменьшение степеней свободы приведенных моделей технологических машин.
- 17. Вынужденные колебания системы с одной степенью свободы.
- 18. Вынужденные колебания системы с одной степенью свободы в случае периодической возмущающей силы.
- 19. Матричные методы определения частот свободных колебаний, приведенных моделей технологических машин.