ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ

«НОВОСИБИРСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ»

Физико-технический факультет

"УТВЕРЖДАЮ"

Декан ФТФ

профессор, д.ф.м.н. Дмитриев Александр Капитонович

...____ Γ

ПРОГРАММА ГОСУДАРСТВЕННОГО ЭКЗАМЕНА

Прикладная физика лазеров

ООП: направление 140400.62 Техническая физика

Факультет: физико-технический очная форма обучения

Курс: 4, семестр: 8

Всего: 2 нед.

Новосибирск

2011

19322/14517

Рабочая программа составлена на основании _Государственного образовательного стандарта высшего профессионального образования по направлению (специальности): 553100 Техническая физика.(№ 344 тех/бак от 14.04.2000)

Рабочая программа обсуждена на заседании кафедры Лазерных систем протокол № 8 от 29.08.2011

Программу разработал

профессор, д.ф.м.н. Титов Евгений Анатольевич

Заведующий кафедрой

профессор, д.ф.м.н. Титов Евгений Анатольевич

Ответственный за основную образовательную программу

профессор, д.ф.м.н. Титов Евгений Анатольевич

1. Внешние требования

Таблица 1.1

Шифр дисциплины	Содержание учебной дисциплины	Часы
	ГОСУДАРСТВЕННЫЙ ОБРАЗОВАТЕЛЬНЫЙ СТАНДАРТ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ	2 нед.
	Направление 553100 - Техническая физика	
	7.2.3. Требования к государственному экзамену бакалавра	
	Порядок проведения и программа государственного экзамена по направлению 553100 - Техническая физика определяются вузом на основании методических рекомендаций и соответствующей примерной программы, разработанных УМО по образованию в области машиностроения и приборостроения, Положения об итоговой государственной аттестации выпускников высших учебных заведений, утвержденного Минобразования России и государственного образовательного стандарта по направлению 553100 - Техническая физика.	

2. Цели государственного экзамена

Таблица 2.1

После государственного экзамена студент будет

	арственного экзамена студент будет
иметь	
представление	
1	об описании электромагнитного поля с помощью волнового уравнения в
	параксиальном приближении и об интегральном методе Френеля-Киргофа
2	как решать волновое уравнение в параксиальном приближении для
	гауссова пучка основной моды
3	как параметризовать гауссов пучок основной моды с помощью
	комплексного параметра q
4	о постановке задач в лазерной физике (двухуровневое приближение,
	резонансное взаимодействие излучения с веществом и т.д.)
5	о понятии однородного и неоднородного уширения линии
6	о кинетических уравнениях для матрицы плотности
7	о коэффициентах поглощения в слабом и сильном полях и их структуре,
	об эффекте насыщения
8	о нелинейных резонансах насыщенного поглощения (дырка Беннета,
	провал Лэмба)
9	о режимах работы лазеров
10	о классификации состояний в атомной и молекулярной физике
знать	о классификации состоянии в атомной и молекулирной физикс
11	какими параметрами описывается гауссов пучок основной моды
12	
12	что такое матричный метод в оптике и АВСД-теорема для описания
12	преобразования гауссовых пучков линейными оптическими элементами
13	как и какими параметрами описывается резонатор со сферическими
1.4	зеркалами
14	как найти собственную частоту резонатора и какой вид имеет поле
1.5	соответствующей моды (собственная функция)
15	решение задачи о резонаторе с плоскопараллельными зеркалами и почему
	эта задача не сводится к задаче о резонаторе со сферическими зеркалами
16	как описать потери в резонаторах
17	уравнения для матрицы плотности, физический смысл ее диагональных и
	недиагональных элементов
18	как учесть влияние столкновений на уравнения для матрицы плотности,
	упругие и неупругие столкновения, специфика их проявления
19	решение основных задач о взаимодействии резонансного излучения с
	двухуровневой системой: неподвижные и движущиеся атомы, бегущая и
	стоячая волны, что такое параметр насыщения, понятия дырки Беннета и
	провала Лэмба
20	какими квантовыми числами описываются одно и многоэлектронные
	атомы, как устроены двухатомные молекулы
уметь	
21	делать оценки, решать простые задачи, работать со справочной и текущей
-	литературой в процессе выполнения НИР в Институте лазерной физики
	CO PAH

3. Содержание государственного экзамена

І. ТЕОРИЯ ЭЛЕКТРОМАГНИТНОГО ПОЛЯ

- 1. Пространство время. Мировая линия. Предельная скорость распрос-транения сигналов, ее независимость от выбора инерциальной системы отсчета. Интервал. Относительность промежутков времени и длин отрезков. Преобразования Лоренца. Собственное время и собственная длина.
- 2. Релятивистский принцип ковариантности фундаментальных физических законов. Принцип наименьшего действия в релятивистской механике. Действие и функция Лагранжа свободной частицы. Масса, энергия, импульс. Преобразование энергии и импульса.
- 3. Четырехмерный потенциал электромагнитного поля. Функция Лагранжа заряда в электромагнитном поле. Обобщенный импульс. Функция Гамильтона.
- 4. Напряженность электрического и магнитного полей. Калибровочная инвариантность. Тензор электромагнитного поля. Преобразования Лоренца для напряженностей полей, инварианты поля.
- 5. Уравнения Максвелла в вакууме. Плотность энергии и плотность потока энергии (вектор Пойнтинга).
- 6. Волновое уравнение. Калибровка Лоренца. Монохроматическая плоская волна. Поляризация волн.
- 7. Инвариантность фазы. Преобразование частоты и волнового вектора. Продольный и поперечный эффекты Допплера.
- 8. Уравнения Максвелла в диэлектрической среде. Взаимная ориентация волнового вектора, напряженностей полей и электрической индукции в плоской волне.
- 9. Падение плоской волны на плоскую границу раздела двух диэлектриков. Формулы Френеля. Угол Брюстера.

II. КВАНТОВАЯ МЕХАНИКА

- 1. Корпускулярно-волновой дуализм электромагнитного поля и микрочастиц, его проявление в экспериментах.
- 2. Описание состояния микрочастицы в квантовой механике. Уравнение Шредингера. Интерпретация волновой функции. Плотность потока вероятности.
- 3. Представление физических величин операторами. Собственные функции и собственные значения операторов. Их физический смысл. Среднее значение физической величины в заданном состоянии.
- 4. Одномерное движение квантовой частицы в потенциальных полях прямоугольной формы. Математическая постановка задачи. Основные квантовомеханические эффекты.
- 5. Момент импульса частицы в квантовой механике. Операторы момента, их собственные функции и собственные значения.
- 6. Стационарные состояния атома водорода. Квантовые числа, энергетический спектр, волновые функции.
- 7. Квантовый гармонический осциллятор. Волновые функции и энергетический спектр стационарных состояний.
- 8. Орбитальный магнитный момент атома водорода. Магнетон Бора.
- 9. Спин электрона. Операторы спина. Их собственные функции и собственные значения. Спиновый магнитный момент. Физические проявления спина.
- 10. Принцип неразличимости тождественных частиц. Его математическая формулировка в квантовой механике.
- 11. Одноэлектронное приближение в теории сложных атомов. Общий вид волновых функций одноэлектронного приближения. Принцип Паули.
- 12. Обменное взаимодействие на примере двухэлектронной системы. Роль обменного взаимодействия в образовании химической связи между атомами.

- 13. Квантовые переходы под действием возмущения, зависящего от времени. Первое приближение теории возмущений для возмущений, гармонически зависящих от времени.
- 14. Резонансное приближение в теории квантовых переходов (двухуровневое приближение). Осцилляции Раби.
- 15. Квантовые системы во внешнем электромагнитном поле. Гамильтониан возмущения. Дипольное приближение.

III. ЭЛЕМЕНТЫ ТЕОРИИ ЛАЗЕРА

- 1. Радиационная вероятность перехода. Время жизни состояния 2Р атома водорода.
- 2. Однородное и неоднородное уширение спектральных линий. Допплеровская форма линии излучения.
- 3. Кинетические уравнения для матрицы плотности. Физический смысл диагональных и нелиагональных элементов.
- 4. Резонансный коэффициент поглощения и показатель преломления сильной бегущей волны для неподвижных атомов. Эффект насыщения, параметр насыщения, полевое уширение линии поглощения.
- 5. Резонансный коэффициент поглощения сильной бегущей волны в газе движущихся атомов. Изменение функции распределения атомов по скоростям из-за бегущей волны. Дырка Беннета.
- 6. Резонансный коэффициент поглощения стоячей волны в газе движущихся атомов. Провал Лэмба.
- 7. Принцип работы лазера. Условие генерации. Пороговая разность населенностей. Мощность генерации в одночастотном режиме.
- 8. Лазер с нелинейно поглощающей ячейкой. Пик мощности.

4. Организация государственного экзамена

По результатам самостоятельной подготовки студент сдает государственный экзамен комиссии из трех преподавателей. Каждый экзаменационный билет содержит три вопроса из раздела "Содержание государственного экзамена". Возможны дополнительные вопросы.

5. Порядок защиты государственного экзамена

Максимальное число баллов, которые студент может получить на экзамене - 100: ПО 30 БАЛЛОВ ЗА ПЕРВЫЕ ДВА ВОПРОСА И 40 БАЛЛОВ ЗА 3-Й ВОПРОС. По сумме определяется рейтинг и выставляется оценка в соответствии с Положением о балльно-рейтинговой системе (БРС).

6. Список литературы

6.1 Основная литература

В печатном виде

- 1. Бакланов Е. В. Основы лазерной физики : [учебник] / Е. В. Бакланов ; Новосиб. гос. техн. ун-т. Новосибирск, 2011. 130 с. : ил.
- 2. Luo Z. Spectroscopy of Solid-State Laser and Luminescent Materials / Zundu Luo, Yidong Huang and Xueyuan Chen. New York, 2007. IX, 353 р. : ill.. Пер. загл.: Спектроскопия твердотельных лазеров и люминесцентных веществ.

В электронном виде

1. Бакланов Е. В. Основы лазерной физики: [учебник] / Е. В. Бакланов; Новосиб. гос. техн. ун-т. - Новосибирск, 2011. - 130 с.: ил.. - Режим доступа: http://www.ciu.nstu.ru/fulltext/tutorials/2011/11 baklanov.pdf

6.2 Дополнительная литература

В печатном виде

- 1. Звелто О. Принципы лазеров : пер. с англ. / О. Звелто ; пер. с англ. Е. В. Сорокина и [др.], под ред. Т. А. Шмаонова. М., 1990. 558 с. : ил.
- 2. Бакланов Е. В. Физические основы теории лазеров : учебное пособие для Ш-ІУ курсов физико-техн. фак. ,напр. 553100(техническая физика) дн. отд. / Новосиб. гос. техн ун-т ; 2-е изд. Новосибирск, 1998. 64 с. : ил.
- 3. Титов Е. А. Гауссовы пучки и оптические резонаторы : учебное пособие для 3-4 курсов Φ Т Φ направления 553100 / Е. А. Титов ; Новосиб. гос. техн. ун-т. Новосибирск, 1998. 78 с. : ил
- 4. Ландау Л. Д. Теоретическая физика. Т. 3 : [учебное пособие] / Л. Д. Ландау, Е. М. Лифшиц. М., 1963. 702 с. : ил.