ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ

«НОВОСИБИРСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ»

Факультет автоматики и вычислительной техники

"УТВЕРЖДАЮ"

Декан АВТФ

РАБОЧАЯ ПРОГРАММА УЧЕБНОЙ ДИСЦИПЛИНЫ

Вычислительная математика

ООП: направление 230200.62 Информационные системы

Шифр по учебному плану: ЕН.Р.2

Факультет: автоматики и вычислительной техники очная форма обучения

Курс: 2, семестр: 4

Лекции: 18

Практические работы: - Лабораторные работы: 18

Курсовой проект: - Курсовая работа: - РГЗ: 4

Самостоятельная работа: 32

Экзамен: - Зачет: 4

Всего: 76

Новосибирск

2011

Рабочая программа составлена на основании _Государственного образовательного стандарта высшего профессионального образования по направлению (специальности): 554400 Информационные системы.(№ 762 тех/бак от 23.12.2005)

ЕН.Р.2, дисциплины национально- регионального (вузовского) компонента

Рабочая программа обсуждена на заседании кафедры Вычислительной техники протокол № 1 от 28.01.2011

Программу разработал

профессор, д.т.н.

Рабинович Евгений Владимирович

Заведующий кафедрой

профессор, д.т.н.

Губарев Василий Васильевич

Ответственный за основную образовательную программу

доцент, д.т.н. Белик Дмитрий Васильевич

1. Внешние требования

Таблица 1.1

Шифр дисциплины	Содержание учебной дисциплины	
ЕН.Ф.01.5	ТРЕБОВАНИЯ ГОСУДАРСТВЕННОГО ОБРАЗОВАТЕЛЬНОГО СТАНДАРТА ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ	76
	Выписка из квалификационных требований ГОС.	
	Подготовка выпускника должна обеспечивать квалификационные умения для решения профессиональных задач:	
	- участие во всех фазах проектирования, разработки, изготовления и сопровождения объектов профессиональной деятельности;	
	- участие в разработке всех видов документации на программные, аппаратные и программно-аппаратные комплексы;	
	- использование современных методов, средств и технологии разработки объектов профессиональной деятельности;	
	- участие в проведении научных исследований и выполнении технических разработок в своей профессиональной области;	
	- осуществление сбора, обработки, анализа и систематизации научно-технической информации по заданной теме своей профессиональной области с применением современных информационных технологий;	
	- взаимодействие со специалистами смежного профиля при разработке методов, средств и технологий применения объектов профессиональной деятельности в научных исследованиях и проектно-конструкторской деятельности, а также в управлении технологическими, экономическими и социальными системами.	
	Концептуальная записка по направлению 230200.62 Информационные системы	
	ЕН.Ф.01.5 Вычислительная математика: 140 часов	
	особенности математических вычислений, реализуемых на ЭВМ: теоретические основы численных методов: погрешности вычислений; устойчивость и сложность алгоритма (по памяти, по времени); численные методы линейной алгебры; решение нелинейных уравнений и систем; интерполяция функций; численное интегрирование и	

дифференциро	вание;	решение	обыкн	новенных	
дифференциал	ьных уравнений;	методы	приблия	кения и	
аппроксимации	и функций;	преобразо	ование	Фурье;	
равномерное	приближение	функций;	матема	тические	
программные с	системы.				

2. Особенности (принципы) построения дисциплины

Таблица 2.1

Особенности (принципы) построения дисциплины

Особенность	Содержание
(принцип)	1
Основания для введения дисциплины в учебный план по направлению или	Решением Ученого совета факультета. Протокол №4 от 21.04.2010
специальности	T
Адресат курса	Дисциплина "Вычислительная математика" входит в число обязательных дисциплин федерального компонента направления подготовки бакалавров
Основная цель (цели) дисциплины	Цель преподавания дисциплины состоит в изучении основ вычислительной математики как научной и прикладной дисциплины, достаточные для дальнейшего продолжения образования в области вычислительной техники и смежных с ней областях.
Ядро дисциплины	Курс предусматривает дать студентам представление о роли и месте вычислительной математики и специалиста-алгоритмиста при постановке, выборе эффективных алгоритмов и интерпретации результатов решения задач в области проектирования и эксплуатации средств вычислительной техники.
Связи с другими учебными дисциплинами основной образовательной программы	Теория вероятностей, математическая статистика и случайные процессы
Требования к первоначальному уровню подготовки обучающихся	Пройден курс "Математический анализ"
Особенности организации учебного процесса по дисциплине	Оценка знаний и умений студентов проводится во время защиты реферата и сдачи экзамена.

3. Цели учебной дисциплины

Таблица 3.1

После изучения дисциплины студент будет

	mar Andrian eriffent of Mer
иметь представление	
1	о понятиях, методах, средствах вычислительной математики.
знать	
2	основные задачи, методы и алгоритмы вычислительной математики
3	взаимосвязь вычислительной математики и других научных дисциплин
уметь	
4	делать обоснованный выбор средств решения конкретных задач
	численного анализа.
иметь опыт (владеть)	
5	сводить постановки задач на содержательном уровне к формальным и
	относить их к соответствующим формальным моделям численного
	анализа
6	ориентироваться в структуре математических моделей как средствах
	вычислительной математики

4. Содержание и структура учебной дисциплины

Лекционные занятия

Таблица 4.1

лекционные запитии		таолица 4.1
(Модуль), дидактическая единица, тема	Часы	Ссылки на цели
Семестр: 4		
Модуль: ПРИБЛИЖЕННЫЕ ЧИСЛА И ОЦЕНКА		
ПОГРЕШНОСТЕЙ ПРИ ВЫЧИСЛЕНИЯХ		
Дидактическая единица: Приближенные числа		
1.1. Приближенные числа. Классификация	0,5	1, 2
погрешностей		
1.2. Основные источники погрешностей	0,5	1, 2
1.3. Значащая цифра. Число верных знаков	0,5	1, 2
1.4. Правила округления чисел	0,5	1, 2
Дидактическая единица: Вычисление погрешностей		
1.5. Вычисление погрешности функции от n	0,5	1, 2
аргументов		
1.6. Вычисления без точного учета погрешностей	0,5	1, 2
1.7. Обратная задача теории погрешностей	0,5	1, 2
1.8. Точность определения аргумента для функции,	0,5	1, 2
заданной таблицей		
Модуль: АППРОКСИМАЦИЯ ФУНКЦИЙ		
Дидактическая единица: Интерполяция		
2.1 Приближение функций рядами Тейлора	0,5	1, 2, 3, 4, 5
2.2. Интерполяция многочленом Лагранжа	0,5	1, 2, 3, 4, 5 1, 2, 3, 4, 5
2.2.1. Постановка задачи и оценка ее сложности		

2.2.2. Оценка погрешности приближения функции		
2.2.3. Обусловленность задачи интерполяции.		
Постоянная Лебега		
Постоянная леоега		
2.3. Интерполяция многочленами Чебышёва.	0,5	1, 2, 3, 4, 5
Минимизация остаточного члена интерполяции.		-, -, -, -,
2.4. Тригонометрическая интерполяция	0,5	1, 2, 3, 4, 5
2.4.1. Конечные ряды Фурье		
2.4.2. Точность разложения по рядам Фурье		
2.5. Разделенные разности	0,5	1, 2, 3, 4, 5
2.5.1. Простейшие свойства разделенной разности		
2.5.2. Интерполяционный полином в форме Ньютона		
26.75	0.5	1 2 2 4 5
2.6. Кусочно-многочленная глобальная	0,5	1, 2, 3, 4, 5
интерполяция. Сплайны		
2.6.1. Определение сплайнов 2.6.2. В-сплайн		
2.6.2. В-сплаин		
Дидактическая единица: Наилучшее приближение		
2.7. Наилучшее приближение в нормированных	0,5	1, 2, 3, 4, 5
пространствах	0,5	1, 2, 3, 1, 3
2.7.1. Наилучшее приближение в линейных		
нормированных пространствах		
2.7.2. Наилучшее равномерное приближение		
непрерывных функций многочленами		
menpeparam qymiqim imore inemaini		
2.8. Ортогональные системы и их свойства	0,5	1, 2, 3, 4, 5
2.8.1. Гильбертовы пространства. Процесс		
ортогонализации		
2.8.2. Ортогональные многочлены и их свойства		
Модуль: ПРИБЛИЖЕННОЕ		
ДИФФЕРЕНЦИРОВАНИЕ И ИНТЕГРИРОВАНИЕ		
Дидактическая единица: Вычисление производных		
3.1. Приближенное нахождение производной	0,5	1, 2, 3, 4
3.2. Вычисление второй производной	0,5	1, 2, 3, 4
Дидактическая единица: Вычисление интегралов		1 2 2 1
3.3. Приближенное нахождение определенного	0,5	1, 2, 3, 4
интеграла	0.5	1 2 2 4
3.4. Формула Симпсона	0,5	1, 2, 3, 4
3.5. Свойства формулы Симпсона		
Модуль: СИСТЕМЫ ЛИНЕЙНЫХ УРАВНЕНИЙ		
Дидактическая единица: Метод Гаусса		
4.1. Метод исключения Гаусса	0,5	1, 2, 4, 5
4.1. Трудности в методе исключения	0,5	1, 4, 7, 3
т.т.т. грудпости в методе исключения		
4.1.2. Приближенность вычислений. Выбор главного	0,5	1, 2, 4, 5
элемента	,	-, -, 1, 5
4.1.3. Трудоемкость метода исключения для системы	0,5	1, 2, 4, 5
п линейных уравнений	- ,-	, =, ., •
п линеиных уравнении		

	1	
4.1.4. Трехдиагональная система	0,5	1, 2, 4, 5
4.1.5. Метод исключения и определители	0,5	1, 2, 4, 5 1, 2, 4, 5
4.1.6. Решение системы линейных уравнений и	0,5	1, 2, 4, 5
обращение матриц		
Дидактическая единица: Не Гауссовские методы		
4.2. LU - разложение	0,5	1, 2, 4, 5
4.3. Итерационные методы решения СЛАУ	0,5	1, 2, 4, 5
Модуль: НЕЛИНЕЙНЫЕ УРАВНЕНИЯ		
Дидактическая единица: Линеаризация		
5.1. Локальная постановка задачи	0,5	1, 2, 4, 6
5.2. Метод половинного деления		
5.3. Линеаризация	0,5	1, 2, 4, 6
Дидактическая единица: Метод Ньютона		
5.4. Метод Ньютона	0,5	1, 2, 4, 6
5.4.1. Поведение последовательности x(s)		
5.4.2. Алгебраические уравнения		
5.4.3. Огрубленный метод Ньютона	0,5	1, 2, 4, 6
5.4.4. Метод Ньютона как метод итераций		
5.4.5. Достаточное условие сходимости итераций		
5.4.6. Добавления и уточнения к теореме о	0,5	1, 2, 4, 6
сходимости итераций		
5.4.7. Сходимость огрубленного метода Ньютона для		
некратного корня		
5.4.8. Сходимость метода Ньютона		
5.4.9. Система двух уравнений	0,5	1, 2, 4, 6
5.4.10. Система уравнений. Метод Ньютона		
5.4.11. О сходимости метода Ньютона для системы		
уравнений		
Дидактическая единица: Итерационные методы		
5.5. Итерации в системах	0,5	1, 2, 4, 6
5.6. Процесс итераций в линейном приближении	0,5	1, 2, 4, 6

Лабораторная работа

(Модуль), дидактическая единица, тема	Учебная деятельность	Часы	Ссылки на цели
Семестр: 4			
Модуль: АППРОКСИМАЦИЯ ФУНКЦИЙ			
Дидактическая единица: Интерполяция			
Вычисление значений аналитических функций с помощью различных алгоритмов	Приобретение практических навыков работы с прикладными	2	1, 2, 4, 5

Таблица 4.2

приближения.	программами. Выработка умения пользоваться научно- технической литературой в виде учебников, учебных пособий, материалов в электронном виде. Приобретение практических навыков грамотного оформления отчетной документации.		
Дидактическая единица:			
Наилучшее приближение Интерполирование и экстраполирование функций.	Приобретение практических навыков работы с прикладными программами. Выработка умения пользоваться научнотехнической литературой в виде учебников, учебных пособий, материалов в электронном виде. Приобретение практических навыков грамотного оформления отчетной документации.	4	1, 2, 4, 5
Модуль: НЕЛИНЕЙНЫЕ УРАВНЕНИЯ			
Дидактическая единица: Метод Ньютона			
Решение алгебраических и трансцендентных уравнений.	Приобретение практических навыков работы с прикладными программами. Выработка умения пользоваться научнотехнической литературой в виде учебников, учебных пособий, материалов в электронном виде. Приобретение практических навыков грамотного оформления отчетной	4	1, 2, 4, 5

	документации.		
Дидактическая единица: Итерационные методы			
Решение систем нелинейных уравнений	Приобретение практических навыков работы с прикладными программами. Выработка умения пользоваться научнотехнической литературой в виде учебников, учебных пособий, материалов в электронном виде. Приобретение практических навыков грамотного оформления отчетной документации.	4	1, 2, 4, 5
Модуль: ПРИБЛИЖЕННОЕ ДИФФЕРЕНЦИРОВАНИЕ И ИНТЕГРИРОВАНИЕ			
Дидактическая единица: Вычисление производных			
Численное дифференцирование и интегрирование функций.	Приобретение практических навыков работы с прикладными программами. Выработка умения пользоваться научнотехнической литературой в виде учебников, учебных пособий, материалов в электронном виде. Приобретение практических навыков грамотного оформления отчетной документации.	4	1, 2, 4, 5

5. Самостоятельная работа студентов

Семестр- 4, Подготовка к зачету Лекционный материал и основная литература по дисциплине 12 часов

Семестр- 4, РГЗ

Лекционный материал и основная литература по дисциплине 16 часов

Семестр- 4, Индив. работа

8 часов

Семестр- 4, Подготовка к занятиям
Теоретическая часть лабораторного занятия, текст лекций 4 часа

6. Правила аттестации студентов по учебной дисциплине

СИСТЕМА КОНТРОЛЯ И ОЦЕНКИ ЗНАНИЙ

Для аттестации студентов по дисциплине используется балльно-рейтинговая система. Рейтинг студента по дисциплине определяется как сумма баллов за работу в семестре (текущий рейтинг) и баллов, полученных в результате итоговой аттестации (экзамен).

В таблице приведено максимальное количество баллов, которое может набрать студент по видам учебной деятельности в течение семестра и диапазоны баллов, соответствующие минимальному и максимальному количествам баллов. Максимальная сумма баллов за семестр составляет 100 баллов (текущий рейтинг -60 баллов, итоговая аттестация -40 баллов).

Правила текущей аттестации:

- 1. В течение семестра необходимо представить и защитить 5 лабораторных работ, расчетно-графическую работу в сроки, установленные учебным графиком (см. таблицу).
- 2. К защите допускаются студенты, выполнившие лабораторные работы, РГР в полном объеме (все задания согласно варианту) и оформившие отчет по работе в соответствии с требованиями.
- 3. На защите предлагается два теоретических вопроса и один практический вопрос (по ходу выполнения работы).
- 4. Максимальное количество баллов (8 или 12 в зависимости от вида работы) выставляется, если студент полностью ответил на все вопросы, без серьезных замечаний и недочетов.
- 5. Количество баллов 4 8 или 6 12 (в зависимости от вида работы) выставляется, если студент полностью ответил на два вопроса из трех, причем один из вопросов практический.
- 6. Минимальное количество баллов 3 или 6 8 (в зависимости от вида работы) выставляется, если студент ответил на два вопроса из трех частично, с серьезными замечаниями, недочетами.
- 7. Пересдача лабораторной работы, РГР назначается, если студент не ориентируется в учебном материале, не может объяснить ход и результаты выполнения работы. В случае пересдачи работы происходит потеря баллов (максимальное количество баллов составляет 7 или 10 в зависимости от вида работы).
- 8. В случае представления и защиты работ с опозданием от учебного графика происходит потеря баллов (опоздание на 1 неделю потеря 1 или 2 баллов в зависимости от вида работы, опоздание на 2 недели потеря 2 или 4 баллов, 3 недели и более потеря 50% баллов от максимально возможного).

Правила итоговой аттестации:

- 1. К экзамену допускаются студенты, сдавшие лабораторные работы, РГР, и набравшие не менее 50% (30 баллов) по результатам текущего рейтинга.
- 2. Экзамен проводится в устном виде, предлагается одна практическая задача и один теоретический.
- 3. Максимальное количество 36-40 баллов выставляется, если оба задания выполнены полностью, без серьезных замечаний.
- 4. Количество баллов 30-35 выставляется, если успешно выполнено практическое задание, а теоретическое задание с замечаниями или недочетами.
- 5. Минимальное количество баллов 20-29 выставляется, если выполнено практическое задание, но с серьезными ошибками, замечаниями, недочетами.

Таблица

№ п/п	Вид учебной работы (учебной деятельности)	Максимальное количество баллов	Диапазоны баллов	Срок представления и защиты (неделя семестра)
1.	Лабораторная работа №1	8	4 - 8	2
2.	Лабораторная работа №2	8	4 - 8	4
3.	Лабораторная работа №3	8	4 - 8	6
4.	Лабораторная работа №4	8	4 - 8	8
5.	Лабораторная работа №5	8	4 - 8	10
6.	Расчетно-графическая	20	10 - 20	14
	работа			
Ито	го по текущему рейтингу:	60	30-60	
7.	Зачет	40	20-40	
Ито	го за семестр:	100	63 - 100	
			(зачтено)	

7. Список литературы

7.1 Основная литература

В печатном виде

- 1. Марчук Г. И. Методы вычислительной математики : учебное пособие / Г. И. Марчук. СПб. [и др.], 2009. 608 с.. На обл.: Знание! Уверенность! Успех!.
- 2. Шампайн Л. Ф. Решение обыкновенных дифференциальных уравнений с использованием MATLAB: учебное пособие / Л. Ф. Шампайн, И. Гладвел, С. Томпсон; пер. с англ. И. А. Макарова. СПб. [и др.], 2009. 299 с.: ил.
- 3. Фаддеев М. А. Основные методы вычислительной математики : учебное пособие / М. А. Фаддеев, К. А. Марков. СПб. [и др.], 2008. 154 с. : ил., табл.
- 4. Амосов А. А. Вычислительные методы : учебное пособие для вузов / А. А. Амосов, Ю. А. Дубинский, Н. В. Копчёнова. М., 2008. 670, [1] с. : ил., табл. Рекомендовано УМО.
- 5. Волков Е. А. Численные методы : учебное пособие / Е. А. Волков. СПб. [и др.], 2007. 248 с. : ил.
- 6. Численные методы: сборник задач: [учебное пособие для вузов] / [В. Ю. Гидаспов и др.]; под ред. У. Г. Пирумова. М., 2007. 144 с. Рекомендовано МО.
- 7. Тыртышников Е. Е. Методы численного анализа: [учебное пособие для вузов по направлению "Математика" (010100), "Прикладная математика и информатика" (010200), "Физика" (010700), "Механика" (010900)] / Е. Е. Тыртышников. М., 2007. 316, [1] с.: ил. Рекомендовано МО.
- 8. Вержбицкий В. М. Численные методы. Математический анализ и обыкновенные дифференциальные уравнения: [учебное пособие для вузов по математическим специальностям и направлениям подготовки дипломированных специалистов в области техники и технологии] / В. М. Вержбицкий. М., 2005. 398, [1] с. Рекомендовано МО. 9. Вержбицкий В. М. Основы численных методов: учебник для вузов по направлению "Прикладная математика" / В. М. Вержбицкий. М., 2005. 839, [1] с.: ил., табл. -

В электронном виде

Рекомендовано МО.

1. Вержбицкий В. М. Основы численных методов: учебник для вузов по направлению "Прикладная математика" / В. М. Вержбицкий. - М., 2005. - 839, [1] с.: ил., табл. - Рекомендовано МО.

7.2 Дополнительная литература

8. Методическое и программное обеспечение

8.1 Методическое обеспечение

В электронном виде

1. Рабинович Е. В. Вычислительная математика [Электронный ресурс] : [электронный учебно-методический комплекс] / Е. В. Рабинович ; Новосиб. гос. техн. ун-т. - Новосибирск, [2012]. - Режим доступа: ftp://tkvt.cs.nstu.ru/teacher/EVR/CM/. - Загл. с экрана.

8.2 Программное обеспечение

1. Parametric Technology Corporation, MathCAD 14, Система автоматизации математических расчетов

9. Контролирующие материалы для аттестации студентов по дисциплине Задание 1. Запишите порядок выполняемых вами операций, оцените погрешности их результатов, вычислите и запишите искомое значение.

Задание 2. Выясните погрешность задания исходных данных, необходимую для получения результата с m верными значащими цифрами.

Задание 3. Выполните обращение матрицы A и решение системы AX=В методом Гаусса по любой из известных схем, ограничиваясь в записи чисел тремя знаками после запятой. Получите решение той же задачи в среде MatLab и сравните полученные результаты. Приняв найденное методом Гаусса решение за начальное приближение, выполните его уточнение до 4-5 знаков любым из итерационных методов.

Задание 4. Решите систему СX=D. Для несимметрической С воспользуйтесь методом Краута, для симметрической - методом квадратных корней. Сопоставьте полученные решения (треугольные матрицы и оценки X) с получаемыми стандартными средствами MatLab.