« »

РАБОЧАЯ ПРОГРАММА УЧЕБНОЙ ДИСЦИПЛИНЫ Оптоэлектронные элементы автономных информационных и управляющих систем

: 27.03.04 , :

: 3, : 5

		,
		5
1 ()	4
2		144
3		81
4	, .	36
5	,	. 18
6	,	. 18
7	, .	0
8	, .	2
9	, .	7
10	,	. 63
11 (, ,	
12		

				1.1
Компетенция ФГОС: ПК.6 способность производить расчет устройств систем автоматизации и управления и выбирать измерительной и вычислительной техники для проектиров соответствии с техническим заданием; в части следующих р	стандартные ания систем а	средства втомати	автоматики,	
12.	esymanian o	y temati		
4.				
9.				
4.				
8.				
2.				2.1
	(2,1
, , ,)	(
, , , , ,				
.6. 12				
12				
1.312. знать действие внешних воздействующих факторов и их	совокупности		•	
на параметры оптоэлектронных элементов				
.6. 4		_		
2.34. знать принцип действия отдельных оптоэлектронных элем	ентов		;	;
			,	
.6. 9				
3.39. знать методы расчета отдельных оптоэлектронных элемен	гов		;	
.6. 4	KA	1		
 у4. уметь измерять параметры и их характеристики оптоэлект элементов 	ронных		;	
.6. 8		•		
 5.у8. уметь рассчитывать параметры и характеристики оптоэлен элементов 	тронных			
3.				
				2.4
		,		3.1
	,	•		
:5				
: .				
1. ,				
().	0	2	1, 2	
				\dashv
·	0	2	2	
	0	2		

3	0	2	2
:			
4. ()	0	4	2
5. , , , , , , , ,	0	2	2
6.	0	2	2
7	0	2	2
8	0	2	2
:		•	
9	0	2	2
10.	0	2	2
11	0	3	2
12	0	4	2
13.	0	3	2
14.	0	2	2
15.	0	2	2

				3.2
	, .			
:5				
:			•	
1.	0	4	2, 4	,
:				
2. (0	4	2, 4	, , ,
:				•
3.	0	5	2, 4	,
4	0	5	2, 4	· - ,
	•			3.3
	, .			
: 5				
:			•	
1.	0	3	5	
2	0	3	5	-
:	1	I .	ı	· ·
3	0	4	5	
:				•

4.	,	, ,						,	:
p-i-n), ,	,	0	5	2, 3, 5	(),	p-i-n
5.		,	,	0	3	2, 3, 5		,	,
	•		4.			2, 3, 3		•	
									
	: 5								
1		,	,			2, 3	15	5	
••,	-	" "	.,	:["]/				3 : [.], 2011	538 .:
2						1, 2, 4	38	0	
		-	, 2 : "], 2011 538	3 .: .,	, ,		:["]/ .	
3						1, 2	10	2	
		2:	, , [.], 2011 538	3 .: .,	, " "	["]/	
				5.					
					-		,	(.5	5.1
						-			

(), 15- ECTS. . 6.1.

6.1

		0.1
	•	
: 5		
Лекция: посещение	5	9
" :[" " "]/ [.], 2011 538 . :	., ."	п
Лабораторная: выполнение и защита	16	24
" :[" " "]/ [.], 2011 538 . :	., ."	"
Практические занятия: посещение	4	9
" :[" " "]/ [.], 2011 538 . :	., "	п
РГЗ: выполнение и защита	5	18
" ", ",	:[011 538 . :	., "
Экзамен:	20	40
" "]/ [.],2	:[:011 538 . :	., ."

6.2

6.2

		/			
.6	12.	+	+	+	
	4.	+	+	+	
	9.			+	
	4.			+	
	8.			+	

1

7.

1. Легкий В. Н. Оптоэлектронные элементы и устройства систем специального назначения : [учебник] / В. Н. Легкий, Б. В. Галун, О. В. Санков ; Новосиб. гос. техн. ун-т. - Новосибирск, 2011. - 454 с. : табл., ил., схемы - Режим доступа:http://elibrary.nstu.ru/source?bib_id=vtls000159492

- **2.** Игнатов А. Н. Оптоэлектроника и нанофотоника [Электронный ресурс] : учеб. пособие / А. Н. Игнатов. Санкт-Петербург : Лань, 2011. 544 с. Режим доступа: http://e.lanbook.com. Загл. с экрана.
- **3.** Астайкин А. И. Основы оптоэлектроники : [учебное пособие для вузов] / А. И. Астайкин, М. К. Смирнов. М., 2007. 275, [2] с. : ил.
- **1.** Пихтин А. Н. Оптическая и квантовая электроника : учебник для вузов по направл. "Электроника и микроэлектроника" / А. Н. Пихтин. М., 2001. 573 с. : ил.
- **2.** Шарупич Л. С. Оптоэлектроника : [учебник] / Л. С. Шарупич, Н. М. Тугов. М., 1984. 255, [1] с. : ил., табл.
- **3.** Верещагин И. К. Введение в оптоэлектронику : учебное пособие для втузов / И. К. Верещагин, Л. А. Косяченко, С. М. Кокин. М., 1991. 191 с. : ил.
- 1. Электронно-библиотечная система НГТУ [Электронный ресурс] : электронно-библиотечная система. [Россия], 2011. Режим доступа: http://elibrary.nstu.ru/. Загл. с экрана.
- 2. ЭБС НГТУ: http://elibrary.nstu.ru/
- 3. ЭБС «Издательство Лань»: https://e.lanbook.com/
- **4.** 9EC IPRbooks: http://www.iprbookshop.ru/
- 5. GEC "Znanium.com": http://znanium.com/

6. :

8.

8.1

1. Игнатов А. Н. Оптоэлектроника и нанофотоника : [учебное пособие по направлениям подготовки "Электроника и наноэлектроника" и "Телекоммуникации"] / А. Н. Игнатов. - Санкт-Петербург [и др.], 2011. - 538 с. : ил., табл.

8.2

- 1 Windows
- 2 Office

9.

1	Lumien Master Control	
2	Lumen waster Control	
	V., G D	
3	ViewSonic Projector PJD772HD	

1	-	
2		
3		
4		
5	1507	
6		
7		
8		

Федеральное государственное бюджетное образовательное учреждение высшего образования «Новосибирский государственный технический университет»

Кафедра автономных информационных и управляющих систем

"УТВЕРЖДАЮ"
ДЕКАН ФЛА
д.т.н., профессор С.Д. Саленко
Γ.

ФОНД ОЦЕНОЧНЫХ СРЕДСТВ

учебной дисциплины

Оптоэлектронные элементы автономных информационных и управляющих систем Образовательная программа: 27.03.04 Управление в технических системах, профиль: Автономные информационные и управляющие системы

1. Обобщенная структура фонда оценочных средств учебной дисциплины

Обобщенная структура фонда оценочных средств по дисциплине Оптоэлектронные элементы автономных информационных и управляющих систем приведена в Таблице.

Таблица

			Этапы оценки компетенций			
Формируемые компетенции	Показатели сформированности компетенций (знания, умения, навыки)	Темы	Мероприятия текущего контроля (курсовой проект, РГЗ(Р) и др.)	Промежуточная аттестация (экзамен, зачет)		
ПК.6/ПК	34. знать принцип	Введение. Задачи, решаемые с	Отчет по	Экзамен, вопросы 1-		
способность	действия отдельных	помощью оптоэлектронных	лабораторной	4, 5-16,17-18, 19-30,		
производить расчеты и	оптоэлектронных элементов	приборов(ОЭП). Достоинства и недостатки ОЭП.	работе 1,2,3,4 РГЗ	31-38		
проектирование	элементов	Функциональное назначение				
отдельных блоков и		ОЭП. Газовые и жидкостные				
устройств систем		лазеры. Волоконные лазеры и				
автоматизации и		лазерные усилители.				
управления и		Диапазон оптического				
выбирать		спектра. Уравнение				
стандартные средства		напряженности электрического поля в				
автоматики,		плоской волне для				
измерительной и		монохроматического света.				
вычислительной		Когерентное и некогерентное				
техники для		излучение. Инжекционные				
проектирования		полупроводниковые лазеры				
систем		Инжекционные ДГС-лазеры.				
автоматизации и управления в		Полосковые гетеролазеры. Рабочие характеристики				
соответствии с		инжекционных				
техническим		лазеров. Температурные				
заданием		зависимости инжекционных				
		лазеров. Деградация.				
		Источники когерентного				
		излучения. Г енерация и				
		усиление когерентного излучения. Твердотельные				
		лазеры, принцип действия,				
		характеристики, методы				
		возбуждения. Классификация				
		приемников оптического				
		излучения. Фотоприемники с				
		внутренним				
		фотоэлектрическим эффектом. Фотогальванический эффект.				
		Эффект фотопроводимости,				
		Красная граница фотоэффекта.				
		Лазерное усиление. Условие				
		лазерного усиления. Инверсия				
		населенностей. Накачка				
		лазера. Положительная				
		обратная связь в лазерном усилителе. Фотонная лавина.				
		Моды .Классификация лазеров				
		в зависимости от вида				
		активного вещества.				
		Твердотельные лазеры.				
		Методы возбуждения.				
		Люминесценция. Схема				
		энергетических переходов.				
		Спонтанное и вынужденное излучение. Прямые и				
		излучение. Прямые и		<u> </u>		

	1	1		T
		непрямые межзонные		
		переходы. Принцип работы		
		фотодиода. Режимы работы		
		фотодиодаХарактеристики и		
		параметры		
		фотодиодаПринцип работы		
		р-i-n фотодида, фотодиода		
		Шоттки, лавинного		
		фотодиода. Принцип работы		
		фототранзистораХарактерист		
		ики фототранзистора. Принцип работы		
		фототиристора		
		Светоизлучающие диоды		
		(СИД) Параметры и		
		характеристики СИД.		
		Конструкция СИД.		
		Фотодиоды, принцип		
		действия, конструкции,		
		назначение, основные		
		характеристики		
		(электрические и		
		спектральные),		
		быстродействие, шумы		
		фотодиодов. Фотодиоды с р-і-		
		п структурой, диоды Шоттки,		
		лавинные фотодиоды и		
		фотодиоды с		
		гетероструктурой.		
		Сопоставление параметров		
		фотодиодов применительно к		
		системам специального		
		назначения. Фоторезисторы.		
		Принцип действия. Основные		
		параметры фоторезисторов.		
		Конструкция фоторезисторов.		
		Достоинства и недостатки		
THE CATHE	0	фоторезисторов.		D
ПК.6/ПК	39. знать методы	Светодиоды, применение,		Экзамен, вопросы 5-
	расчета отдельных	расчет схем . Фотодиоды, принцип действия,		8, 24-27
	оптоэлектронных	принцип деиствия, конструкции, назначение,		
	элементов	основные характеристики		
		(электрические и		
		спектральные),		
		быстродействие, шумы		
		фотодиодов. Фотодиоды с р-і-		
		п структурой, диоды Шоттки,		
		лавинные фотодиоды и		
		фотодиоды с		
		гетероструктурой.		
		Сопоставление параметров		
		фотодиодов применительно к		
		системам специального		
		назначения.		
ПК.6/ПК	з12. знать действие	Введение. Задачи, решаемые с	Отчет по	Экзамен, вопросы 1-2
	внешних	помощью оптоэлектронных	лабораторной	_
	воздействующих	приборов(ОЭП). Достоинства	работе 1,2,3,4. РГЗ	
	факторов и их	и недостатки ОЭП.		
	совокупности на	Функциональное назначение		
	параметры	ОЭП.		
	оптоэлектронных			
	элементов			

ПК.6/ПК	у4. уметь измерять	Исследование параметров	Экзамен, вопросы
	параметры и их	системы ближней локации	
	характеристики	(ИК-система) Исследование	
	оптоэлектронных	принципа действия одно- и	
	элементов	трехкамерных электронно-	
		оптических преобразователей.	
		Исследование характеристик	
		полупроводниковых	
		излучателей	
		(светоизлучающих диодов и	
		лазеров) Исследование	
		характеристик	
		фотоприемников	
		(фоторезисторов и	
		фотодиодов)	
ПК.6/ПК	у8. уметь	Красная граница фотоэффекта.	Экзамен, вопросы 39-
	рассчитывать	Решение задач. Светодиоды,	43, 5-8, 24-27
	параметры и	применение, расчет схем.	
	характеристики	Фотодиоды, принцип	
	оптоэлектронных	действия, конструкции,	
	элементов	назначение, основные	
		характеристики	
		(электрические и	
		спектральные),	
		быстродействие, шумы	
		фотодиодов. Фотодиоды с p-i-	
		п структурой, диоды Шоттки,	
		лавинные фотодиоды и	
		фотодиоды с	
		гетероструктурой.	
		Сопоставление параметров	
		фотодиодов применительно к	
		системам специального	
		назначения. Функциональные	
		особенности построения	
		оптико-электронных систем	
		специального назначения для	
		обороны и безопасности.	
		Энергетические и световые	
		величины.	

2. Методика оценки этапов формирования компетенций в рамках дисциплины.

Промежуточная аттестация по **дисциплине** проводится в 5 семестре - в форме экзамена, который направлен на оценку сформированности компетенций ПК.6/ПК.

Кроме того, сформированность компетенции проверяется при проведении мероприятий текущего контроля, указанных в таблице раздела 1.

В 5 семестре обязательным этапом текущей аттестации является расчетно-графическое задание (работа) ($P\Gamma 3(P)$). Требования к выполнению $P\Gamma 3(P)$, состав и правила оценки сформулированы в паспорте $P\Gamma 3(P)$.

Общие правила выставления оценки по дисциплине определяются балльно-рейтинговой системой, приведенной в рабочей программе учебной дисциплины.

На основании приведенных далее критериев можно сделать общий вывод о сформированности компетенции ПК.6/ПК, за которые отвечает дисциплина, на разных уровнях.

Общая характеристика уровней освоения компетенций.

Ниже порогового. Уровень выполнения работ не отвечает большинству основных требований, теоретическое содержание курса освоено частично, пробелы могут носить существенный характер,

необходимые практические навыки работы с освоенным материалом сформированы не достаточно, большинство предусмотренных программой обучения учебных заданий не выполнены или выполнены с существенными ошибками.

Пороговый. Уровень выполнения работ отвечает большинству основных требований, теоретическое содержание курса освоено частично, но пробелы не носят существенного характера, необходимые практические навыки работы с освоенным материалом в основном сформированы, большинство предусмотренных программой обучения учебных заданий выполнено, некоторые виды заданий выполнены с ошибками.

Базовый. Уровень выполнения работ отвечает всем основным требованиям, теоретическое содержание курса освоено полностью, без пробелов, некоторые практические навыки работы с освоенным материалом сформированы недостаточно, все предусмотренные программой обучения учебные задания выполнены, качество выполнения ни одного из них не оценено минимальным числом баллов, некоторые из выполненных заданий, возможно, содержат ошибки.

Продвинутый. Уровень выполнения работ отвечает всем требованиям, теоретическое содержание курса освоено полностью, без пробелов, необходимые практические навыки работы с освоенным материалом сформированы, все предусмотренные программой обучения учебные задания выполнены, качество их выполнения оценено числом баллов, близким к максимальному.

Федеральное государственное бюджетное образовательное учреждение высшего образования «Новосибирский государственный технический университет» Кафедра автономных информационных и управляющих систем

Паспорт экзамена

по дисциплине «Оптоэлектронные элементы автономных информационных и управляющих систем», 5 семестр

1. Метолика оценки

Экзамен проводится в устной форме, по билетам . Билет формируется по следующему правилу: первый вопрос выбирается из диапазона вопросов <u>1-21</u>, второй вопрос из диапазона вопросов <u>22-43</u> (список вопросов приведен ниже). В ходе экзамена преподаватель вправе задавать студенту дополнительные вопросы из общего перечня (п. 4).

Форма экзаменационного билета

НОВОСИБИРСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ Факультет ФЛА

Билет № к экзамену по дисциплине «Оптоэлектронные элементы автономных информационных и управляющих систем»
1. Вопрос 1 Задачи, решаемые с помощью оптоэлектронных приборов(ОЭП). Достоинства и недостатки ОЭП. Функциональное назначение ОЭП.
 2.Вопрос 2. Основные параметры фоторезисторов. Вольт-амперная и энергетическая характеристики. 2. Задача Ширина запрещенной зоны в PbS составляет 0.37 эВ, а в германии с примесью меди — 0.04 эВ. Оценить красную границу фотоприемника на основе этих соединений
Утверждаю: зав. кафедрой должность, ФИО (подпись) (дата)

1. Критерии оценки

- . Ответ на экзаменационный билет считается **неудовлетворительным**, если студент при ответе на вопросы не дает определений основных понятий, не способен показать причинно-следственные связи явлений. оценка составляет 0-19 *баллов*.
- Ответ на экзаменационный билет засчитывается на **пороговом** уровне, если студент при ответе на вопросы дает определение основных понятий, может показать причинноследственные связи явлений.

оценка составляет 20-30 *баллов*.

- Ответ на экзаменационный билет засчитывается на **базовом** уровне, если студент при ответе на вопросы формулирует основные понятия, законы, дает характеристику процессов, явлений, проводит анализ причин, условий, может представить качественные характеристики процессов. оценка составляет 31-34 *баллов*.
- Ответ на экзаменационный билет засчитывается на **продвинутом** уровне, если студент при ответе на вопросы проводит сравнительный анализ подходов, проводит комплексный анализ, выявляет проблемы, предлагает механизмы решения, способен представить количественные характеристики определенных процессов, приводит конкретные примеры из практики.
- оценка составляет <u>35-40</u> *баллов*.

2. Шкала оценки

Оценка знаний и умений студентов проводится в соответствии с «Положением о балльно-рейтинговой системе оценки достижений студентов НГТУ» от 02.07.09 г.

Рейтинг студента по дисциплине определяется как сумма баллов за работу в семестре (текущая аттестация) и баллов, полученных в результате итоговой аттестации (экзамен)

Итоговая аттестация студента проводится в форме экзамена. Максимальное количество баллов, которое студент может получить на экзамене, равно 40, минимальное 20.

Общее количество баллов за виды учебной деятельности студента, предусмотренные программой освоения дисциплины в семестре, может составлять не более 60 баллов.

Для получения допуска к экзамену студент обязан выполнить все предусмотренные в рабочей программе дисциплины виды работ в семестре и набрать количество баллов не ниже минимально допустимого - 30 баллов. Если по результатам работы в семестре студент набрал менее 20 баллов, ему выставляется итоговая оценка по дисциплине «неудовлетворительно» (F) без права последующей пересдачи. В этом случае студенту предлагается изучить дисциплину повторно на платной основе. Если по результатам работы в семестре студент набрал 20 - 30 баллов, то решение о допуске к сдаче экзамена принимает декан факультета.

Если студенту выставляется итоговая оценка по дисциплине «неудовлетворительно» (FX) с правом последующей пересдачи, то в результате пересдачи студент имеет право получить оценку не выше (E).

Если студент в течение семестра в соответствии с установленными правилами аттестации по дисциплине набирает 60 баллов, то он вправе получить итоговую оценку и соответствующую оценку по 15-уровневой шкале ECTS без проведения процедуры итоговой аттестации.

Количество выставляемых баллов зависит от полноты и качества выполнения учебных заданий, своевременности сдачи работ.

В табл. 1 приводятся требования к текущей аттестации по дисциплине, формы контроля, минимальное и максимальное количество баллов по каждому виду деятельности.

Таблица 1

Формы контроля	Требования к аттестации	Количество баллов			
		Минимальное		Максимальное	
Посещаемость	Пропуск занятия - 0 баллов	9		18	
практических и	Посещение занятия - 0,5				
лекционных занятий	балла				
		за	за все	3a	за все
		работу	работы	работу	работы

Работа на	1		16	6	24
лабораторных занятиях.	балл Защита работы: -				
В семестре 4 работы	посредственная - 2 балла -				
	хорошая - 4 балла -				
	отличная - 5 баллов				
Расчетно-графическое	Оценка «отлично»: работа	5		18	
задание, реферат	высокого качества, уровень				
	выполнения отвечает всем				
	требованиям - 18 баллов.				
	Оценка «хорошо»: работа				
	хорошая, уровень				
	выполнения отвечает				
большинству требований -					
(12 -17) баллов. Оценка					
	«удовлетворительно»:				
	работа слабая, уровень				
	выполнения не отвечает				
	большинству требований -				
	(5-11) баллов.				
Итоговое количество ба	30		60		

Итоговая аттестация студента проводится в форме экзамена. Оценка знаний и умений студентов проводится с помощью вопросов по основным проблемам дисциплины. Для оценки деятельности студента используются зачетные задания в виде 2-х теоретических вопросов и задачи. Теоретические вопросы формулируются в строгом соответствии с темами лекционных занятий. Максимальное количество баллов, которое студент может получить на экзамене, равно 40

Устанавливаются следующие правила аттестации студента (таблица 2).

Таблица 2

Характер ответа	Количество баллов за ответ
Правильный ответ на вопрос	16
Неполный ответ на вопрос	8-12
Неточный ответ на вопрос	8
Решение задачи	4-8

Рейтинг студента для выставления итоговой оценки по дисциплине в «буквенной» форме в соответствии с 15-уровневой шкалой оценок ECTS, а также в традиционной форме приведен в таблице 3.

Таблица 3

Диапазон баллов рейтинга		оценка ECTS	традиционная форма	традиционная форма
90-100	98 - 100	A+		
	93 - 97	A	0.000	
	90 - 92	A-	отлично	
80-89	87 - 89	B+		ЗАЧТЕНО
	83 - 86	В		SATIENO
	80 - 82	B-	Vonomo	
70-79	77 - 79	C+	хорошо	
	73 - 76	С		

	70 - 72	C-			
60-69	67 - 69	D+			
	63 - 66	D	удовлетворительно		
	60 - 62	D-			
50-59		Е			
25-49		FX	WAY IT OR TAMP OF VITA IT WA	НЕ ЗАЧТЕНО	
0-24		F	неудовлетворительно		

В общей оценке по дисциплине экзаменационные баллы учитываются в соответствии с правилами балльно-рейтинговой системы, приведенными в рабочей программе лисциплины.

- 3. **Вопросы к** экзамену **по дисциплине** «Оптоэлектронные элементы автономных информационных и управляющих систем»
- 1.Задачи, решаемые с помощью оптоэлектронных приборов(ОЭП). Достоинства и недостатки ОЭП. Функциональное назначение ОЭП.
- 2.Основные требования по ВВФ, предъявляемым к оптоэлектронным элементам и устройствам, работающим в составе систем специального назначения(ССН). Эксплуатация оптоэлектронныхССН в космосе.
- 3. Диапазон оптического спектра. Уравнение напряженности электрического поля в плоской волне для монохроматического света. Когерентное и некогерентное излучение.
- 4. Люминесценция. Схема энергетических переходов. Спонтанное и вынужденное излучение. Прямые и непрямые межзонные переходы.
- 5. Светоизлучающие диоды. Принцип работы. Внутренняя квантовая эффективность. Внешняя квантовая эффективность.
- 6.Светоизлучающие гетероструктуры.
- 7. Параметры и характеристики СИД(световая, вольтамперная, спектральная). Диаграмма направленности. Температурная зависимость. Быстродействие.
- 8. Конструкция СИД. Диффузионная, эпитаксиальная структуры. Конструкция с поверхностным излучателем, с торцевым излучателем. Индикаторные СИД. Обозначение СИЛ.
- 9. Лазерное усиление. Процесс лазерного усиления. Квантовые переходы в активной среде лазера. Условие лазерного усиления. Инверсия населенностей.
- 10. Накачка лазера. Положительная обратная связь в лазерном усилителе. Фотонная лавина. Моды.
- 11. Классификация лазеров в зависимости от вида активного вещества. Твердотельные лазеры.
- 12.Методы возбуждения твердотельных лазеров. Использование в качестве генератора накачки газоразрядной лампы и эллиптического рефлектора.
- 13.Инжекционные полупроводниковые лазеры. Достоинства. Инжекционный лазер на арсениде галлия. Конструкция.
- 14. Инжекционные ДГС-лазеры. Полосковые гетеролазеры.
- 15. Рабочие характеристики инжекционных лазеров. (Вольтамперная, ватт-амперная, спектральная). Диаграмма направленности.
- 16. Температурные зависимости инжекционных лазеров. Частотная характеристика. Деградация.
- 17. Газовые и жидкостные лазеры.
- 18. Волоконные лазеры и лазерные усилители.
- 19. Классификация приемников оптического излучения по механизму преобразования, по используемым материалам, по назначению и области применения.

- 20. Фотоприемники с внутренним фотоэлектрическим эффектом. Фотогальванический эффект. Эффект фотопроводимости, Красная граница фотоэффекта.
- 21. Фоторезисторы. Принцип действия по зонной диаграмме, схема подключения. Уравнение для фототока.
- 22. Основные параметры фоторезисторов. Вольт-амперная и энергетическая характеристики.
- 23.Спектральная, частотная характеристики фоторезиторов. Конструкция фоторезисторов. Обозначение фоторезисторов. Достоинства и недостатки фоторезисторов.
- 24. Принцип работы фотодиода по энергетической диаграмме. Режимы работы фотодиода. Обозначение фотодиода.
- 25. Вольт-амперная, энергетическая и спектральная характеристики фотодиода. Основные параметры фотодиода.
- 26. Принцип работы р-і-п фотодиода. Достоинства и недостатки. Принцип работы фотодиода Шоттки по энергетической диаграмме. Основные достоинства.
- 27. Принцип работы лавинного фотодиода по энергетической диаграмме. Коэффициент лавинного умножения.
- 28. Принцип работы фототранзистора по энергетической диаграмме. Схема включения с общим эмиттером.
- 29. Характеристики фототранзистора. Обозначение фототранзистора.
- 30. Принцип работы фототиристора. Схема включения. Вольт-амперная характеристика.
- 31. Принцип работы оптрона. Достоинства и недостатки.
- 32. Элементы оптопары. Параметры, характеризующие работу оптопары.
- 33.Оптрон резисторный. Принцип работы. Зависимость сопротивления от входного тока.
- 34Температурная зависимость. Достоинства и недостатки оптрона резисторного. Область применения. Обозначение.
- 35.Оптрон диодный. Принцип работы. Передаточная характеристика в фотодиодном режиме.
- 36. Передаточная характеристика диодного оптрона в фотогальваническом режиме. Температурная зависимость. Особенность применения диодных оптронов. Область применения. Обозначение.
- 37. Транзисторные оптопары. Передаточная характеристика. Температурная зависимость коэффициента передачи транзисторной оптопары. Достоинства транзисторныхоптопар. Область применения. Обозначение.
- 38. Транзисторные оптопары с открытым оптическим каналом.
- 39. Фотоприемники на основе внешнего фотоэффекта. Основные законы фотоэффекта.
- 40. Вакуумные и газонаполненные фотоэлементы. Принцип работы. Вольтамперная характеристика. Обозначение.
- 41. Фотоэлектронные умножители. Принцип действия. Достоинства и недостатки.
- 42. Принцип действия электронно-оптических преобразователей напряжения. Основные характеристики.
- 43. Конструкция однокамерного и трехкамерногоэлектронно-оптического преобразователя напряжения.

Федеральное государственное бюджетное образовательное учреждение высшего образования «Новосибирский государственный технический университет» Кафедра автономных информационных и управляющих систем

Паспорт расчетно-графического задания (работы)

по дисциплине «Оптоэлектронные элементы автономных информационных и управляющих систем», 5 семестр

При выполнении расчетно-графического задания студенты должны провести анализ исходных данных, провести анализ литературы по данной тематике РГЗ(Р) и выбрать расчетные формулы, рассчитать требуемые параметры в соответствии с исходными данными, провести анализ темы реферата, выбрать необходимую литературу, раскрыть тему в соответствии с заданием.

Обязательные структурные части РГЗ(Р).

- 1.Введение
- 2. Исходные данные.
- 3. Расчетные формулы.
- 4. Расчетная часть.
- 5. Текстовая часть
- 6. Выводы.
- 7. Список литературы.

Оцениваемые позиции: правильность выбора расчетных формул, достоверность расчетов, полнота раскрытия темы реферата, применяемая литература.

1. Критерии оценки

- Работа считается **не выполненной**, если выполнены не все части РГ3(Р), отсутствуют или приведены неверные расчетные формулы, обнаружены ошибки в расчетах, которые оказывают влияние на последующие расчеты, не раскрыта тема реферата, оценка составляет 0-4____ баллов.
- Работа считается выполненной **на пороговом** уровне, если части РГЗ(Р) выполнены формально: расчетные формулы приведены, но в части расчетов присутствуют ошибки, не приводящие к принципиальному изменению, тема раскрыта, но без практических примеров, оценка составляет <u>5-11</u> баллов.
- Работа считается выполненной **на базовом** уровне, если анализ проведен в полном объеме, отсутствуют ошибки в расчетах, оценка составляет <u>12-17</u> баллов.

Работа считается выполненной **на продвинутом** уровне, если анализ проведен в полном объеме, отсутствуют ошибки в расчетах, студентом приведены примеры расчета с использованием разных источников и разных расчетных формул, приведены конкретные практические примеры по рассматриваемой теме реферата, оценка составляет <u>18</u> баллов

2. Шкала оценки

В общей оценке по дисциплине баллы за РГЗ(Р) учитываются в соответствии с правилами балльно-рейтинговой системы, приведенными в рабочей программе дисциплины.

- 3. Примерный перечень тем РГЗ(Р)
- 1. Фоторезисторные матрицы
- 2. Волоконно-оптические элементы обработки сигналов
- 3. Импульсный передатчик на СИД

- 4. Конструкция и принцип действия жидкостного лазера
- 5. Передатчик на СИД непрерывного действия
- 6. Приемник на фоторезисторе
- 7. Фотоэлектрические преобразователи
- 8. Тенденции развития электронно-оптических преобразователей изображений
- 9. Твердотельные преобразователи изображений
- 10. Фотоприборы с зарядовой связью
- 11. Регулируемые расширители пучка излучения
- 12. Термопластические преобразователи изображений
- 13. Приемники излучений с накоплением сигнала
- 14. Дефлекторы изображений
- 15. Приемник на фотодиоде
- 16. СБЛ наземного базирования