« »

РАБОЧАЯ ПРОГРАММА УЧЕБНОЙ ДИСЦИПЛИНЫ Вычислительная математика

: 27.03.04 , :

: 2, : 4

:

. .

Компетенция ФГОС: ОПК.1 способность представлять адекватную совре научную картину мира на основе знания основных положений, законов и математики; в части следующих результатов обучения:		
10.		
11.		
12.		
13.		
3.		
9.		
10.		
11.		
9.		
2.		
		2.1
, , ,)		
, , , , , , , , , , , , , , , , , , , ,		
.1. 9		
1. знать методы численного решения систем линейных алгебраических уравнений	;	;
.1. 10		
2. знать численные методы решения нелинейных систем алгебраических уравнений	;	;
.1. 11		
3. знать численные методы решения обыкновенных дифференциальных уравнений	;	;
.1. 9		
4. уметь по виду математической модели определять ее тип	;	;
.1. 10		
5. уметь исследовать характер модели и подбирать адекватный метод решения	;	;
.1. 11	•	
6. уметь выбирать параметры метода решения	;	;
.1. 12	•	
7. знать методы численного дифференцирования и интегрирования функций	;	;
.1. 13	•	
8. знать методы интерполирования функций	;	;
	L	

.1. 3		
9. знать природу возникновения погрешностей при применении	;	;
математических моделей и необходимости оценивать погрешность	,	<i>'</i>

3.

3.1

	, .		
: 4			
:		•	
1. ,	0	4	5, 9
:			
2.	0	6	1, 4, 5
:			•
3. ,	0	6	2, 4, 5, 6
:			
4.	0	8	4, 5, 8
:			
5. , , ,	0	6	4, 5, 6, 7
(
:			
6. , , , , , , , , , , , , , , , , , , ,	0	6	3, 4, 5, 6

3.2

	, .			
: 4				
:				•
1.				
, .	0	2	5, 9	
:				

2.						
	. (,	0	3	1, 4, 5		
).					
	,).					
3.	:					•
	,					
	•	0	4	2, 4, 5, 6		
	:					
4.						
	·	0	3	4, 5, 8		
	· · · · · · · · · · · · · · · · · · ·					
5.	•					
	,					
	,	0	3	4567		
	•	U	3	4, 5, 6, 7		
(, ,					
	,).					
6.	:					
	,	0	3	3, 4, 5, 6		
	,					
	4.					
	: 4			1, 2, 4, 5, 6, 7,		
1				8, 9	15	4
: []: -			« /	;	»
	, [2016]	: http://e	library.n	stu.ru/source?bib	_id=vtls0002236	578
2				1, 2, 3, 4, 5, 6, 7, 8, 9	18	0
	- :[:]/ .			. [.],
2009	366, [1] . : .		۱٬ ۰			· r · · J,
3				1, 2, 3, 4, 5, 6, 7, 8, 9	12	3

: /	; ; ru/source?bib_id=vtls000223700.]:	-	, [2016	5]
: http://enorary.nstu.	5.	<u>-</u> .	•		
	J.				
		,			
	-		(. 5.1)	
	_				5.1
	• • •				
		;			
6.					
		-			
(),	. 6.1.	15) -	ECTS.	
	. 0.1.				
					6.1
: 4					
Подготовка к занятиям: Выпорешение задач, максимум 3 бал		25	2	7	
Практические занятия: Решен за задачу	ие задач, максимум 3 балла	0	2	7	
РГ3:		20	4	0	
() []: - http://elibrary.nstu.ru/source?bib_id=vtls000223678	" ;	, [2016	« 5] :	*	
Зачет:		0	2	0	
() ; http://elibrary.nstu.ru/source?bib_id=vtls000223700	" , [2016]	:]:		
6.2					
	•				6.2
.1 10.				+	+
11.					+
12.				+	+
13.				+	+
3.					+

9.	+	+
10.	+	+
11.	+	+
9.	+	+

1

7.

- 1. Вержбицкий В. М. Основы численных методов: учебник для вузов по направлению "Прикладная математика" / В. М. Вержбицкий. М., 2005. 839, [1] с.: ил., табл.
- **2.** Электронная библиотека «Юрайт» [Электронный ресурс] : электронно-библиотечная система. [Россия], 2017. Режим доступа: https://www.biblio-online.ru. Загл. с экрана.
- **3.** Электронная библиотека «Юрайт» [Электронный ресурс] : электронно-библиотечная система. [Россия], 2017. Режим доступа: https://www.biblio-online.ru. Загл. с экрана.
- **1.** Пантелеев А. В. Методы оптимизации в примерах и задачах : учебное пособие для втузов / А. В. Пантелеев, Т. А. Летова. М., 2005. 544 с. : ил., табл.
- **2.** Амосов А. А. Вычислительные методы : учебное пособие для вузов / А. А. Амосов, Ю. А. Дубинский, Н. В. Копчёнова. М., 2008. 670, [1] с. : ил., табл.
- **1.** eLIBRARY.RU (Научная электронная библиотека РФФИ) [Электронный ресурс]. [Россия], 2000-2015. Режим доступа: http://(www.elibrary.ru). Загл. с экрана.
- 2. 36C HITY: http://elibrary.nstu.ru/
- **3.** Математика и математическое моделирование [Электронный ресурс] : журнал / Московский государственный технический университет имени Н.Э. Баумана (национальный исследовательский университет). 2003-2017. Режим доступа: https://elibrary.ru/title_about.asp?id=54179. Загл. с экрана.
- 4. ЭБС «Издательство Лань»: https://e.lanbook.com/
- 6. 9EC "Znanium.com": http://znanium.com/

7. :

8.

8.1

- 1. Борисова И. В. Методические указания по решению задач курса «Вычислительная математика» [Электронный ресурс] : учебно-методическое пособие / И. В. Борисова ; Новосиб. гос. техн. ун-т. Новосибирск, [2016]. Режим доступа: http://elibrary.nstu.ru/source?bib id=vtls000223678. Загл. с экрана.
- **2.** Борисова И. В. Вычислительная математика [Электронный ресурс] : электронный учебно-методический комплекс / И. В. Борисова ; Новосиб. гос. техн. ун-т. Новосибирск, [2016]. Режим доступа: http://elibrary.nstu.ru/source?bib id=vtls000223700. Загл. с экрана.
- **3.** Копченова Н. В. Вычислительная математика в примерах и задачах : [учебное пособие для вузов] / Н. В. Копченова, И. А. Марон. СПб. [и др.], 2009. 366, [1] с. : табл.

1 Windows

2 Office

9. -

1					
	(-	,	,	

Федеральное государственное бюджетное образовательное учреждение высшего образования «Новосибирский государственный технический университет»

Кафедра автономных информационных и управляющих систем

"УТВЕРЖДАЮ'	,
ДЕКАН ФЛА	
д.т.н., профессор С.Д. Саленко)
" Γ	

ФОНД ОЦЕНОЧНЫХ СРЕДСТВ

учебной дисциплины

Вычислительная математика

Образовательная программа: 27.03.04 Управление в технических системах, профиль: Автономные информационные и управляющие системы

1. **Обобщенная структура фонда оценочных средств учебной дисциплины** Обобщенная структура фонда оценочных средств по дисциплине Вычислительная математика приведена в Таблице.

Таблица

	_		Этапы оцені	ки компетенций
Формируемые компетенции	Показатели сформированности компетенций (знания, умения, навыки)	Темы	Мероприятия текущего контроля (курсовой проект, РГЗ(Р) и др.)	Промежуточная аттестация (экзамен, зачет)
ОПК.1 способность представлять адекватную современному уровню знаний научную картину мира на основе знания основных положений, законов и методов естественных наук и математики	з3. знать природу возникновения погрешностей при применении математических моделей и необходимости оценивать погрешность	Действия над приближенными величинами, относительная и абсолютная погрешность. Погрешность вычисления значений функции	РГЗ, разделы 1-5	Зачет, вопросы 1
ОПК.1	39. знать методы численного решения систем линейных алгебраических уравнений	Нормы и обусловленность матриц. Численное решение ограниченной проблемы собственных значений. Прямые методы решения СЛАУ (Гаусса, прогонки). Итерационные методы решения СЛАУ (простых итераций, Зейделя).	РГЗ, раздел 1	Зачет, вопросы 2-4
ОПК.1	з10. знать численные методы решения нелинейных систем алгебраических уравнений	Методы половинного деления, простых итераций и Ньютона для нелинейных уравнений. Методы простых итераций и Ньютона для нелинейных систем. Безусловная оптимизация функций.	РГЗ, раздел 2	Зачет, вопросы 5-6
ОПК.1	з11. знать численные методы решения обыкновенных дифференциальных уравнений	Задача Коши, интегрирование ДУ с помощью рядов, метод Эйлера, Метод Рунге-Кутты. Краевые задачи для ОДУ		Зачет, вопросы 13-14
ОПК.1	312. знать методы численного дифференцирования и интегрирования функций	Численное дифференцирование, конечные разности, погрешности численного дифференцирования, выбор оптимального шага. Численное интегрирование (квадратурные формулы прямоугольников, трапеций, Симпсона, Гаусса).	РГЗ, разделы 4,5	Зачет, вопросы 11-12
ОПК.1	313. знать методы интерполирования функций	Интерполяция таблично заданных функций. Интерполяционный многочлен Лагранжа. Интерполяция для равноотстоящих узлов. Сплайн-интерполяция.	РГЗ, раздел 3	Зачет, вопросы 8-10

математической ДУ с помощью рядов, метод модели определять Эйлера, Метод Рунге-Кутты. ее тип Краевые задачи для ОДУ	
ее тип Краевые задачи для ОДУ	
Интерполяция таблично	
заданных функций.	
Интерполяционный	
многочлен Лагранжа.	
Интерполяция для	
равноотстоящих узлов.	
Сплайн-интерполяция. Методы половинного деления,	
простых итераций и Ньютона	
для нелинейных уравнений.	
Методы простых итераций и	
Ньютона для нелинейных	
систем. Безусловная	
оптимизация функций. Нормы	
и обусловленность матриц. Численное решение	
ограниченной проблемы	
собственных значений.	
Прямые методы решения	
СЛАУ (Гаусса, прогонки).	
Итерационные методы	
решения СЛАУ (простых	
итераций, Зейделя). Численное	
дифференцирование,	
конечные разности,	
погрешности численного	
дифференцирования, выбор	
оптимального шага.	
Численное интегрирование	
(квадратурные формулы прямоугольников, трапеций,	
Симпсона, Гаусса).	
ОПК.1 у10. уметь Действия над приближенными РГЗ, разделы	1-5 Зачет, вопросы 1-14
исследовать величинами, относительная и	
характер модели и абсолютная погрешность.	
подбирать Погрешность вычисления	
адекватный метод значений функции Задача коши, интегрирование ДУ с	
помощью рядов, метод	
Эйлера, Метод Рунге-Кутты.	
Краевые задачи для ОДУ	
Интерполяция таблично	
заданных функций.	
Интерполяционный многочлен Лагранжа.	
Интерполяция для	
равноотстоящих узлов.	
Сплайн-интерполяция.	
Методы половинного деления,	
простых итераций и Ньютона	
для нелинейных уравнений.	
Методы простых итераций и Ньютона для нелинейных	
систем. Безусловная	
оптимизация функций. Нормы	
и обусловленность матриц.	
Численное решение	
ограниченной проблемы	
собственных значений.	
Прямые методы решения СЛАУ (Гаусса, прогонки).	
Итерационные методы	
решения СЛАУ (простых	

		итераций, Зейделя). Численное дифференцирование, конечные разности, погрешности численного дифференцирования, выбор оптимального шага.		
		Численное интегрирование		
		(квадратурные формулы прямоугольников, трапеций,		
		Симпсона, Гаусса).		
ОПК.1	у11. уметь выбирать параметры метода решения	Задача Коши, интегрирование ДУ с помощью рядов, метод Эйлера, Метод Рунге-Кутты. Краевые задачи для ОДУ Методы половинного деления, простых итераций и Ньютона для нелинейных уравнений. Методы простых итераций и Ньютона для нелинейных систем. Безусловная оптимизация функций. Численное дифференцирование,	РГЗ, разделы 1-5	Зачет, вопросы 5-7, 11-14
		конечные разности, погрешности численного дифференцирования, выбор оптимального шага. Численное интегрирование (квадратурные формулы прямоугольников, трапеций, Симпсона, Гаусса).		

2. Методика оценки этапов формирования компетенций в рамках дисциплины.

Промежуточная аттестация дисциплине проводится 4 семестре форме ПО дифференцированного который направлен оценку сформированности зачета. на компетенцийОПК.1.

Зачет проводится в устной форме, по билетам. Форма билета для зачета и список вопросов приведены в Паспорте зачета.

Кроме того, сформированность компетенций проверяется при проведении мероприятий текущего контроля, указанных в таблице раздела 1.

В 4 семестре обязательным этапом текущей аттестации является расчетно-графическое задание (РГЗ). Требования к выполнению РГЗ, состав и правила оценки сформулированы в Паспорте РГЗ.

Общие правила выставления оценки по дисциплине определяются балльно-рейтинговой системой, приведенной в рабочей программе дисциплины.

Таблица соответствия баллов, традиционной оценки и буквенной оценки ECTS:

Таблина 2

Диапазон баллов рейтинга	98- 100	93- 97	90- 92	87- 89	83- 86	80- 82	77- 79	73- 76	70- 72	67- 69	63- 66	60- 62	50- 59	25- 49	0- 24
Оценка ECTS98	A+	A	A-	B+	В	B-	C+	C	C-	D+	D	D-	Е	FX	F
Традиционная (4-уровневая) шкала оценки		отли	чно			xop	ошо		уд	довле	твори	тельн	Ю	неудо	
	зачтено				незач	тено									

На основании приведенных далее критериев можно сделать общий вывод о сформированности компетенции ОПК.1, за которые отвечает дисциплина, на разных уровнях.

3. Общая характеристика уровней освоения компетенций.

Ниже порогового. Уровень выполнения работ не отвечает большинству основных требований, теоретическое содержание курса освоено частично, пробелы могут носить существенный характер, необходимые практические навыки работы с освоенным материалом сформированы не достаточно, большинство предусмотренных программой обучения учебных заданий не выполнены или выполнены с существенными ошибками.

Пороговый. Уровень выполнения работ отвечает большинству основных требований, теоретическое содержание курса освоено частично, но пробелы не носят существенного характера, необходимые практические навыки работы с освоенным материалом в основном сформированы, большинство предусмотренных программой обучения учебных заданий выполнено, некоторые виды заданий выполнены с ошибками.

Базовый. Уровень выполнения работ отвечает всем основным требованиям, теоретическое содержание курса освоено полностью, без пробелов, некоторые практические навыки работы с освоенным материалом сформированы недостаточно, все предусмотренные программой обучения учебные задания выполнены, качество выполнения ни одного из них не оценено минимальным числом баллов, некоторые из выполненных заданий, возможно, содержат ошибки.

Продвинутый. Уровень выполнения работ отвечает всем требованиям, теоретическое содержание курса освоено полностью, без пробелов, необходимые практические навыки работы с освоенным материалом сформированы, все предусмотренные программой обучения учебные задания выполнены, качество их выполнения оценено числом баллов, близким к максимальному.

Федеральное государственное бюджетное образовательное учреждение высшего образования «Новосибирский государственный технический университет»

Кафедра автономных информационных и управляющих систем

Паспорт зачета

по дисциплине «Вычислительная математика», 4 семестр

1. Методика оценки

Зачет проводится в устной форме, по билетам. Билет формируется по следующему правилу: первое задание - это теоретический вопрос из списка вопросов, приведенного ниже, второе задание - это задача на ту же тему, что и теоретический вопрос.

Ответ на теоретический вопрос должен охватывать весь изученный материал по данной теме, а решение задачи служит иллюстрацией одного из методов.

Форма билета для зачета

НОВОСИБИРСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИ Факультет ФЛА	ІВЕРСИТЕТ
Билет №	
к зачету по дисциплине «Вычислительная математика»	
1. Вопрос 1 2. Задача	
Утверждаю: зав. кафедройдолжность, ФИО (подпись)	
(дата)	

Пример билета для зачета

HOBO	СИБИРСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ
	Факультет ФЛА
	Билет № 1
	к зачету по дисциплине «Вычислительная математика»

- 1. Методы численного дифференцирования на основе интерполяционных многочленов.
- 2. Функция y=sh 2x задана таблично, найти производные y', y'' с помощью первого интерполяционного многочлена Ньютона в точках x=0,0 и x=0,01

						,
\boldsymbol{x}	0,00	0,05	0,10	0,15	0,20	0,25
ν	0,00000	0,10017	0,20134	0,30452	0,41075	0,52110

Утверждаю: зав. кафедрой д.т.н. Легкий В.Н.	
(подпись)	
(дата)	

2. Критерии оценки

- Ответ на билет для зачета считается **неудовлетворительным**, если студент при ответе на вопросы не дает определений основных понятий, при решении задачи допускает принципиальные ошибки. Оценка составляет 0-5 баллов.
- Ответ на билет для зачета засчитывается **на пороговом уровне**, если студент при ответе на вопросы дает определения основных понятий, знает основные численные методы, при решении задачи допускает непринципиальные ошибки, допускает погрешности в ответах. Оценка составляет 6-12 баллов.
- Ответ на билет для зачета засчитывается на базовом уровне, если студент при ответе на вопросы дает определения основных понятий, знает характеристики и условия применения основных численных методов, способен сравнивать их между собой. Оценка составляет 13-17 баллов.
- Ответ на билет для зачета засчитывается **на продвинутом уровне**, если студент при ответе на вопросы проводит сравнительный анализ численных методов, способен самостоятельно выбрать и обосновать метод решения и его параметры, не допускает ошибок в ответах и при решении задачи. Оценка составляет 18-20 баллов.

3. Шкала оценки

Зачет считается сданным, если сумма баллов по всем заданиям билета составляет не менее 10 баллов из 20 возможных.

В общей оценке по дисциплине баллы за зачет суммируются с остальными баллами с коэффициентом 1.

Таблица соответствия баллов, традиционной оценки и буквенной оценки ECTS приведена в Фонде оценочных средств по дисциплине.

4. Вопросы к зачету по дисциплине «Вычислительная математика»

- 1. Действия над приближенными величинами, относительная и абсолютная погрешность
- 2. Прямые методы решения систем линейных алгебраических уравнений.
- 3. Решение систем линейных алгебраических уравнений методом прогонки.
- 4. Итерационные методы решения СЛАУ
- 5. Методы решения нелинейных алгебраических уравнений.
- 6. Методы простых итераций и Ньютона для нелинейных систем.
- 7. Методы одномерной безусловной оптимизаций.
- 8. Интерполяционная формула Лагранжа.
- 9. Принцип построения интерполяционных сплайнов.
- 10. Базисные сплайны
- 11. Методы численного дифференцирования на основе интерполяционных многочленов.
- 12. Методы численного интегрирования.
- 13. Методы решения обыкновенных дифференциальных уравнений.
- 14. Методы решения краевых задач для обыкновенных дифференциальных уравнений.

Федеральное государственное бюджетное образовательное учреждение высшего образования «Новосибирский государственный технический университет»

Кафедра автономных информационных и управляющих систем

Паспорт

расчетно-графического задания

по дисциплине «Вычислительная математика», 4 семестр

1. Методика оценки

В рамках расчетно-графического задания по дисциплине студенты должны найти решение задач численными методами с достижением указанной точности. Если в условии не указан метод решения, он должен быть выбран студентом самостоятельно, исходя из исходных данных. Параметры метода также должны выбираться самостоятельно с учетом исходных данных и заданной точности.

 $P\Gamma 3$ оформляется на листах формата A4, текст с одной стороны, поля – левое 3 см, верхнее, нижнее – 2 см, правое – 1,5 см. Обязательно заполнение титульного листа, условия задачи переписываются перед решением.

Оцениваемые позиции:

- правильность решения задачи;
- достижение заданной точности;
- обоснованность выбора метода решения и параметров метода;
- сравнение результатов при решении задачи несколькими методами;
- аккуратность оформления;
- ответы на вопросы при защите РГЗ.

2. Критерии оценки

- Работа считается **не выполненной**, если выполнены не все задания. Оценка составляет 0-19 баллов.
- Работа считается выполненной **на пороговом** уровне, если все задания выполнены, но не достигнута заданная точность, не обоснован выбор метода решения и параметров метода. При защите РГЗ допущены погрешности в ответах. Оценка составляет 20-25 баллов.
- Работа считается выполненной **на базовом** уровне, если все задания выполнены, заданная точность достигнута, но не обоснован выбор метода решения или параметров метода. При защите РГЗ даны верные ответы. Оценка составляет 26-35 баллов.
- Работа считается выполненной **на продвинутом** уровне, если все задания выполнены, заданная точность достигнута, обоснован выбор метода решения и параметров метода, проведено сравнение результатов, отчет аккуратно оформлен. При защите РГЗ даны верные развернутые ответы. Оценка составляет 36-40 баллов.

3. Шкала оценки

Баллы, полученные за выполнение и защиту РГЗ, входят в общую оценку по дисциплине путем суммирования с остальными баллами с коэффициентом 1.

4. Типовое задание

- 1. Решить методом простых итераций и методом Зейделя систему уравнений. Сравнить полученные результаты и необходимое число шагов.
- 2. Найти корень нелинейного уравнения указанным методом, ε=0,001
- 3. Функция $y = \sqrt[3]{x}$ задана таблицей

	x	1,0	1,1	1,2	1,3	1,4	1,5	1,6
ſ	ν	1.000	1.032	1.063	1.091	1.119	1.145	1.170

Применив схему Эйткена, найти значение функции для заданного x с точностью 10^{-3}

4. Дана таблица значений функции y = f(x) найти значение производной y' в заданной точке х. Оценить погрешности вычисления производной считая, что все табличные значения v_i даны с верными знаками.

эна тения у даны ч					
X	y				
1,0	1,7183				
1,1	2,0042				
1,2	2,3201				
1,3	2,6693				
1,4	3,0552				
1,5	3,4817				
1,6	3,9530				

X	y
1,7	4,4739
1,8	5,0496
1,9	5,6859
2,0	6,3891
2,1	7,1662
2,2	8,0250
2,3	8,9742

x	У
2,4	10,0232
2,5	11,1825
2,6	12,4637
2,7	13,8797
2,8	15,4446
2,9	17,1741
3,0	19,0855

5. Вычислить интеграл заданным методом с точностью до $\varepsilon = 10^{-3}$

5. Варианты заданий

Вариант 1

$$20.9x_1 + 1.2x_2 + 2.1x_3 + 0.9x_4 = 21.70$$

$$1,2x_1 + 21,2x_2 + 1,5x_3 + 2,5x_4 = 27,46$$

1.
$$2,1x_1 + 1,5x_2 + 19,8x_3 + 1,3x_4 = 28,76$$

$$0.9x_1 + 2.5x_2 + 1.3x_3 + 32.1x_4 = 49.72$$

2. Метод половинного деления и упрощенный метод Ньютона.

$$x^4 - 2x - 4 = 0$$
 (положительный корень)

$$3. x = 1.11$$

4.
$$x = 1.0$$

5. Формула трапеций
$$\int\limits_0^1 \frac{dx}{\sqrt{1+x^2}}$$

Вариант 2

$$1,02x_1 - 0,25x_2 - 0,3x_3 = 0,515$$

1.
$$-0.41x_1 + 1.13x_2 - 0.15x_3 = 1.555$$
 $\epsilon = 0.001$

$$-0.25x_1 - 0.14x_2 + 1.21x_3 = 2.780$$

2. Метод простых итераций и метод Ньютона.

$$x^4 - 2x - 4 = 0$$
 (положительный корень)

$$3. x = 1.12$$

$$4. x = 1,1$$

5. Формула Симпсона
$$\int_{0}^{1} \frac{dx}{\sqrt{1+x^2}}$$

Вариант 3

$$10.9x_1 + 1.2x_2 + 2.1x_3 + 0.9x_4 = -7.0$$

1.
$$1,2x_1 + 11,2x_2 + 1,5x_3 + 2,5x_4 = 5,3$$

2, $1x_1 + 1,5x_2 + 9,8x_3 + 1,3x_4 = 10,3$

$$+1.5x_2 + 9.8x_2 + 1.3x_3 \equiv 10.3$$

$$0.9x_1 + 2.5x_2 + 1.3x_3 + 12.1x_4 = 24.6$$

2. Метод половинного деления и упрощенный метод Ньютона. tg(1.9x) - 2.8x = 0

$$3. x = 1.13$$

$$4. x = 1,2$$

5. Формула Ньютона
$$\int_{0}^{1} \frac{dx}{\sqrt{1+x^2}}$$

$$4,00x_1 + 0,24x_2 - 0,08x_3 + 0,16x_4 = 8$$

$$0.09x_1 + 3.00x_2 - 0.15x_3 - 0.12x_4 = 9$$

1.
$$0.09x_1 + 3.00x_2 - 0.15x_3 - 0.12x_4 = 9$$
$$0.04x_1 - 0.08x_2 + 4.00x_3 + 0.06x_4 = 20$$

$$0.02x_1 + 0.06x_2 + 0.04x_3 - 10.00x_4 = 1$$

2. Метод простых итераций и метод Ньютона. tg(1,9x) - 2.8x = 0

 $\epsilon = 0.0005$

- 3. x = 1.14
- 4. x = 1.3
- 5. Формула трапеций $\int_{1}^{2} x \ln x dx$

Вариант 5

$$8,714x_1 + 2,180x_2 + 5,684x_3 = 49,91$$

1.
$$-1,351x_1 + 10,724x_2 + 5,224x_3 = 50,17$$
 $\epsilon = 0,0001$

$$2,489x_1 - 0,459x_2 + 6,799x_3 = 32,68$$

- 2. Метод половинного деления и упрощенный метод Ньютона. $2 \lg x x = 0$
- 3. x = 1.15
- 4. x = 1.4

5. Формула Симпсона
$$\int_{1}^{2} x \ln x dx$$

Вариант 6

$$24,21x_1 + 2,42x_2 + 3,85x_3 = 30,24$$

1.
$$2,31x_1 + 31,49x_2 + 1,52x_3 = 40,95$$
 $\varepsilon = 0,0001$

$$3,49x_1 + 4,85x_2 + 28,72x_3 = 42,81$$

- 2. Метод простых итераций и метод Ньютона. $2 \lg x x = 0$
- 3. x = 1.16
- 4. x = 1.5
- 5. Формула Ньютона $\int_{0}^{2} x \ln x dx$

Вариант 7

$$24,21x_1 + 2,42x_2 + 3,85x_3 = 30,24$$

1.
$$2,31x_1 + 31,49x_2 + 1,52x_3 = 40,35$$
 $\varepsilon = 0,0001$

$$3,49x_1 + 4,85x_2 + 28,72x_3 = 42,81$$

- 2. Метод половинного деления и упрощенный метод Ньютона. $\sin(2,2x) x = 0$
- 3. x = 1.17
- 4. x = 1.6
- 5. Формула трапеций $\int_{1}^{2} \frac{\ln x}{x} dx$

Вариант 8

$$24,41x_1 + 2,42x_2 + 3,85x_3 = 30,24$$

1.
$$2,31x_1 + 31,49x_2 + 1,52x_3 = 40,95$$
 $\epsilon = 0,0001$ $3,49x_1 + 4,85x_2 + 28,92x_3 = 42,81$

2. Метод простых итераций и метод Ньютона. $\sin(2,2x) - x = 0$

$$3. x = 1.18$$

4.
$$x = 1.7$$

5. Формула Симпсона
$$\int_{1}^{2} \frac{\ln x}{x} dx$$

$$24,41x_1 + 2,42x_2 + 3,85x_3 = 30,24$$

1.
$$2,31x_1 + 31,49x_2 + 1,52x_3 = 40,35$$
 $\epsilon = 0,0001$ $3,49x_1 + 4,85x_2 + 28,92x_3 = 42,81$

2. Метод половинного деления и упрощенный метод Ньютона.
$$ln(8x) = 9x - 3$$

$$3. x = 1.19$$

$$4. x = 1.8$$

5. Формула Ньютона
$$\int_{1}^{2} \frac{\ln x}{x} dx$$

Вариант 10

$$24,61x_1 + 2,42x_2 + 3,85x_3 = 30,24$$

1.
$$2,31x_1 + 31,49x_2 + 1,52x_3 = 40,95$$
 $\varepsilon = 0,0001$ $3,49x_1 + 4,85x_2 + 29,12x_3 = 42,81$

2. Метод простых итераций и метод Ньютона.
$$ln(8x) = 9x - 3$$

$$3. x = 1.21$$

$$4. x = 1.9$$

5. Формула трапеций
$$\int_{1}^{2} \frac{\cos x}{x} dx$$

Вариант 11

$$24,61x_1 + 2,42x_2 + 3,85x_3 = 30,24$$

1.
$$2,31x_1 + 31,49x_2 + 1,52x_3 = 40,35$$
 $\epsilon = 0,0001$ $3,49x_1 + 4,85x_2 + 29,12x_3 = 42,81$

2. Метод половинного деления и упрощенный метод Ньютона.
$$0.7e^{-0.59x} - x = 0$$

$$3. x = 1.22$$

$$4. x = 2.0$$

5. Формула Симпсона
$$\int_{1}^{2} \frac{\cos x}{x} dx$$

Вариант 12

$$24,81x_1 + 2,42x_2 + 3,85x_3 = 30,24$$

1.
$$2,31x_1 + 31,49x_2 + 1,52x_3 = 40,95$$
 $\epsilon = 0,0001$
 $3,49x_1 + 4,85x_2 + 29,32x_3 = 42,81$

2. Метод простых итераций и метод Ньютона.
$$0.7e^{-0.59x} - x = 0$$

$$3. x = 1,23$$

$$4. x = 2,1$$

5. Формула Ньютона
$$\int_{1}^{2} \frac{\cos x}{x} dx$$

Вариант 13

$$24,81x_1 + 2,42x_2 + 3,85x_3 = 30,24$$

1.
$$2,31x_1 + 31,49x_2 + 1,52x_3 = 40,35$$
 $\epsilon = 0,0001$
 $3,49x_1 + 4,85x_2 + 29,32x_3 = 42,81$

2. Метод половинного деления и упрощенный метод Ньютона.

 $tg \ x = x$ (наименьший положительный корень)

$$3. x = 1.24$$

$$4. x = 2.2$$

5. Формула трапеций
$$\int\limits_{0}^{\pi/2} \frac{\cos x}{1+x} dx$$

Вариант 14

$$25,01x_1 + 2,42x_2 + 3,85x_3 = 30,24$$

1.
$$2,31x_1 + 31,49x_2 + 1,52x_3 = 40,95$$
 $\epsilon = 0,0001$ $3,49x_1 + 4,85x_2 + 29,52x_3 = 42,81$

2. Метод простых итераций и метод Ньютона.

 $tg \; x = x \; ($ наименьший положительный корень)

$$3. x = 1.25$$

$$4. x = 2.3$$

5. Формула Симпсона
$$\int\limits_{0}^{\pi/2} \frac{\cos x}{1+x} dx$$

Вариант 15

$$25,01x_1 + 2,42x_2 + 3,85x_3 = 30,24$$

1.
$$2,31x_1 + 31,49x_2 + 1,52x_3 = 40,35$$
 $\epsilon = 0,0001$ $3,49x_1 + 4,85x_2 + 29,52x_3 = 42,81$

2. Метод половинного деления и упрощенный метод Ньютона. $5.6\sin(4.8x) - 4.5x = 0$

$$3. x = 1,26$$

$$4. x = 2.4$$

5. Формула Ньютона
$$\int_{0}^{\pi/2} \frac{\cos x}{1+x} dx$$

Вариант 16

$$6,1x_1 + 2,2x_2 + 1,2x_3 = 16,55$$

1.
$$2,2x_1 + 5,5x_2 - 1,5x_3 = 10,55$$
 $\varepsilon = 0,001$
 $1,2x_1 - 1,5x_2 + 7,2x_3 = 16,80$

2. Метод простых итераций и метод Ньютона. $5.6\sin(4.8x) - 4.5x = 0$

$$3. x = 1,27$$

$$4. x = 2.5$$

5. Формула трапеций
$$\int\limits_0^1 \sqrt{x} \sin x dx$$

Вариант 17

$$3,82x_1 + 1,02x_2 + 0,75x_3 + 0,81x_4 = 15,655$$

1.
$$1,05x_1 + 4,53x_2 + 0,98x_3 + 1,53x_4 = 22,705$$

1. $0,73x_1 + 0,85x_2 + 4,71x_3 + 0,81x_4 = 23,480$
 $0,88x_1 + 0,81x_2 + 1,28x_3 + 3,50x_4 = 16,110$

2. Метод половинного деления и упрощенный метод Ньютона. $x^4 - 4x - 1 = 0$

$$3. x = 1.28$$

$$4. x = 2.6$$

5. Формула Симпсона
$$\int_{0}^{1} \sqrt{x} \sin x dx$$

$$6,25x_1 - x_2 + 0,5x_3 = 7,5$$

1.
$$-x_1 + 5x_2 + 2{,}12x_3 = -8{,}68$$
 $\varepsilon = 0{,}001$
0,5 $x_1 + 2{,}12x_2 + 3{,}6x_3 = -0{,}24$

2. Метод простых итераций и метод Ньютона. $x^4 - 4x - 1 = 0$

$$3. x = 1.29$$

$$4. x = 2.7$$

5. Формула Ньютона
$$\int_{0}^{1} \sqrt{x} \sin x dx$$

Вариант 19

$$24,21x_1 + 2,42x_2 + 3,85x_3 = 30,24$$

1.
$$2,31x_1 + 31,49x_2 + 1,52x_3 = 39,95$$
 $\epsilon = 0,0001$ $3,49x_1 + 4,85x_2 + 28,72x_3 = 42,81$

2. Метод половинного деления и упрощенный метод Ньютона.

$$x^4 - 3x^2 + 75x - 10000 = 0$$
 (отрицательный корень)

$$3. x = 1.31$$

$$4. x = 2.8$$

5. Формула трапеций
$$\int_{0}^{1} \sqrt{x} \cos x dx$$

Вариант 20

$$24,41x_1 + 2,42x_2 + 3,85x_3 = 30,24$$

1.
$$2,31x_1 + 31,49x_2 + 1,52x_3 = 39,95$$
 $\epsilon = 0,000$ $3,49x_1 + 4,85x_2 + 28,92x_3 = 42,81$

2. Метод простых итераций и метод Ньютона.

$$x^4 - 3x^2 + 75x - 10000 = 0$$
 (отрицательный корень)

$$3. x = 1,32$$

$$4. x = 2.9$$

5. Формула Симпсона
$$\int_{0}^{1} \sqrt{x} \cos x dx$$

Вариант 21

$$24,61x_1 + 2,42x_2 + 3,85x_3 = 30,24$$

1.
$$2,31x_1 + 31,49x_2 + 1,52x_3 = 39,95$$
 $\epsilon = 0,0001$
 $3,49x_1 + 4,85x_2 + 29,12x_3 = 42,81$

2. Метод половинного деления и упрощенный метод Ньютона. $x^4 + 2x^3 - x - 1 = 0$

$$3. x = 1.33$$

$$4. x = 3.0$$

5. Формула Ньютона
$$\int_{0}^{1} \sqrt{x} \cos x dx$$

Вариант 22

$$24,81x_1 + 2,42x_2 + 3,85x_3 = 30,24$$

1.
$$2,31x_1 + 31,49x_2 + 1,52x_3 = 39,95$$
 $\epsilon = 0,0001$ $3,49x_1 + 4,85x_2 + 29,32x_3 = 42,81$

2. Метод простых итераций и метод Ньютона. $x^4 + 2x^3 - x - 1 = 0$

$$3. x = 1.34$$

$$4. x = 1.0$$

5. Формула трапеций
$$\int\limits_0^\pi \frac{dx}{1+\sin^2 x}$$

$$25,01x_1 + 2,42x_2 + 3,85x_3 = 30,24$$

1.
$$2,31x_1 + 31,49x_2 + 1,52x_3 = 39,95$$
 $\varepsilon = 0,0001$ $3,49x_1 + 4,85x_2 + 29,52x_3 = 42,81$

2. Метод половинного деления и упрощенный метод Ньютона.

$$x^3 - 0.2x^2 - 0.2x - 1.2 = 0$$
 (положительный корень)

$$3. x = 1.35$$

$$4. x = 1.1$$

5. Формула Симпсона
$$\int_{0}^{\pi} \frac{dx}{1+\sin^2 x}$$

Вариант 24

$$24,41x_1 + 2,42x_2 + 3,85x_3 = 30,24$$

1.
$$2,31x_1 + 31,49x_2 + 1,52x_3 = 40,75$$
 $\epsilon = 0,0001$ $3,49x_1 + 4,85x_2 + 28,92x_3 = 42,81$

2. Метод простых итераций и метод Ньютона.

$$x^3 - 0.2x^2 - 0.2x - 1.2 = 0$$
 (положительный корень)

$$3. x = 1.36$$

$$4. x = 1.2$$

5. Формула Ньютона
$$\int\limits_0^\pi \frac{dx}{1+\sin^2 x}$$

Вариант 25

$$24,81x_1 + 2,42x_2 + 3,85x_3 = 30,24$$

1.
$$2,31x_1 + 31,49x_2 + 1,52x_3 = 40,35$$
 $\varepsilon = 0,0001$ $3,49x_1 + 4,85x_2 + 29,32x_3 = 42,81$

2. Метод половинного деления и упрощенный метод Ньютона. $6.3\cos(x) - 4.1x = 0$

$$3. x = 1.37$$

$$4. x = 1.3$$

5. Формула трапеций
$$\int_{0}^{\pi} \frac{dx}{1 + \cos^{2} x}$$

Вариант 26

$$24,21x_1 + 2,42x_2 + 3,85x_3 = 30,24$$

1.
$$2,31x_1 + 31,49x_2 + 1,52x_3 = 40,35$$
 $\epsilon = 0,0001$ $3,49x_1 + 4,85x_2 + 28,72x_3 = 42,81$

2. Метод простых итераций и метод Ньютона. $6.3\cos(x) - 4.1x = 0$

$$3. x = 1.38$$

$$4. x = 1.4$$

5. Формула Симпсона
$$\int_{0}^{\pi} \frac{dx}{1 + \cos^{2} x}$$