« »

٠٠ ,,

РАБОЧАЯ ПРОГРАММА УЧЕБНОЙ ДИСЦИПЛИНЫ Термодинамика и теплопередача

: 24.03.04 , :

: 2, : 3

	,	
		3
1	()	4
2		144
3	, .	80
4	, .	36
5	, .	18
6	, .	18
7	, .	18
8	, .	2
9	, .	6
10	, .	64
11	(, ,	
12		

Компетенция ФГОС: ОПК.10 способность владеть навыками математиче		
процессов и объектов на базе стандартных пакетов исследований; в части обучения:	следующих ре	зультатов
3.		
4.		
3.		
4.		
Компетенция ФГОС: ОПК.11 способность к проведению экспериментов по их результатов; в части следующих результатов обучения:	о заданной мет	годике и анализу
1.		
Компетенция ФГОС: ПК.1		
способность к решению инженерных задач с использованием базы знаний естественнонаучных дисциплин; в части следующих результатов обучения		их и
9.	•	
2.		
		2.1
		2.1
(
, , ,		
.1. 9		
1.Знать свойства и модели жидкости и газов		;
.10. 3		
2. законы теплопроводности и переноса тепла	:	:
	,	;
.10. 4		
3. основные термодинамические законы		
o. conobilisto reparodiminaria recente successi	,	;
10.2		
.10. 3		
4. выполнять расчеты процессов переноса тепла		
A 4 7 A	,	;
5. выполнять расчеты теплообменных аппаратов	;	;
		;
.10. 4		
6. уметь расчитывать термодинамические параметры и проводить анализ	:	:
термодинамических циклов	,	,
.11. 1		
7. уметь применять основные методы физического исследования явлений и	•	•
свойств объектов материального мира	, 	,

3.

				3.1
	, .			
:3				
:				I
1.	0	2	3, 6, 7	(, , , ,); , , , , ; , , , , , , , , ,
2.	0	2	3, 6	; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;
3.	0	2	3, 6	;;;
4.	0	2	3, 6	; ; ;
5.	0	2	3, 6	; ; ; ; ; ;
6.	0	2	3, 6	; T-S ; T-S ;
:				•

7.	0	4	2, 7	;
8.	0	2	2	; ;
9.	0	2	2	;
10.	0	2	2	; ;
11	0	2	2, 4	; ; ().
12.	0	2	2, 4	; ; ;

13.	0	2	2, 4	; ; ; ; ();
14.	0	2	2, 4	;
15.	0	2	2	;
16.	0	4	5	;
				3.2
	, .			
: 3				

1.	2	4	1, 3	, ,
:	T			
3	2	4	2, 4	,
4.	2	4	2, 4	, ,
5.	2	6	4, 5	,
				3.3
:3	, .			

:

1.	1	2	3, 7	,
2.	1	2	1, 3	,
3.	2	2	3, 6, 7	,
4.	1	4	2, 4, 7	,
5.	2	4	2, 4, 7	,
6.	1	2	2, 4, 7	,
7.	2	2	4, 5, 7	,

```
3, 4, 5
                                                                       2-3
              160201, 160202, 150300)
          . . ]. - , 2007. - 34, [1] .: .. -
http://www.library.nstu.ru/fulltext/metodics/2007/3319.rar
                                 160201, 160202, 160901, 160702, 280202, 140401
           2-3
           160100)
                                        260501, 260202, 080401 ;
                   / . . . - ; [ .: . , 2010. - 42, [2] .: .. -
http://www.library.nstu.ru/fulltext/metodics/2010/3944.pdf
                                : http://www.library.nstu.ru/fulltext/metodics/2007/3319.rar
                                       223200 -
                         , [2013]. -
http://elibrary.nstu.ru/source?bib_id=vtls000179036. -
          , 2016. - 33, [3] .: .,
             : http://elibrary.nstu.ru/source?bib_id=vtls000233988
                                                                        , [2014]. -
       : http://elibrary.nstu.ru/source?bib_id=vtls000185530. -
[2014]. -
                     : http://elibrary.nstu.ru/source?bib_id=vtls000185531. -
                                                  2, 3, 4, 5, 6, 7
                                                               160201, 160202, 160901,
160702, 280202, 140401 (
                             160100) ;
                                                             260501, 260202, 080401 ;
             260601
                                                   , 2010. - 42, [2] . : .. -
http://www.library.nstu.ru/fulltext/metodics/2010/3944.pdf
                      2-3 (
                                                             160201, 160202, 150300)
                             . . - ;[ . . . , . . ].-
                         : http://www.library.nstu.ru/fulltext/metodics/2007/3319.rar
2007. - 34, [1] .: ..-
                                        223200 -
                                                                ]/ . .
                                 , [2013]. -
http://elibrary.nstu.ru/source?bib_id=vtls000179036. -
             : http://elibrary.nstu.ru/source?bib_id=vtls000233988
                                                                        , [2014]. -
       : http://elibrary.nstu.ru/source?bib_id=vtls000185530. -
                    : http://elibrary.nstu.ru/source?bib_id=vtls000185531. -
[2014]. -
```

		-		(. 5.1).	
	1					5.
		-				
	e-mail;		;	;		
	e-mail;		;			
	e-mail;		;			
		;			;	
						5.2
1				10;		
лементах технически Краткое описание пр процессов и процессо 6.	рименения: Проблемь	і рассчета парам	етров тер	эмодинами	ческих	
(),		. 6.1.	15	5-	ECTS.	
						6.1
:3						
<i>Пабораторная:</i> выпол	тнение, защита		10		20	
;	" [, [2013]] : : http://elibrary.nstu.r	u/source?bib_id	- =vtls000180026	. /	
PΓ3:			20		40	
Экзамен:			20		40	
;	" [, [2013]]: : http://elibrary.nstu.r	u/source?bib_id	- =vtls000180026		

		/		
.10	3.	+		+
	4.	+	+	+
	3.	+		+
	4.			+
.11	1.			+
.1	9.			+

1

7.

- 1. Горбачев М. В. Тепломассообмен [Электронный ресурс] : электронный учебно-методический комплекс : [для студентов ФЛА направления 223200 Техническая физика] / М. В. Горбачев ; Новосиб. гос. техн. ун-т. Новосибирск, [2013]. Режим доступа: http://elibrary.nstu.ru/source?bib id=vtls000179036. Загл. с экрана.
- **2.** Горбачев М. В. Специальные главы теории теплообмена [Электронный ресурс] : электронный учебно-методический комплекс [для студентов 2 курса ФТФ] / М. В. Горбачев ; Новосиб. гос. техн. ун-т. Новосибирск, [2014]. Режим доступа: http://elibrary.nstu.ru/source?bib_id=vtls000185530. Загл. с экрана.
- **3.** Горбачев М. В. Специальные главы теории теплообмена [Электронный ресурс] : электронный учебно-методический комплекс [для студентов 1 курса ФТФ] / М. В. Горбачев ; Новосиб. гос. техн. ун-т. Новосибирск, [2014]. Режим доступа: http://elibrary.nstu.ru/source?bib id=vtls000185531. Загл. с экрана.
- **4.** Шаров Ю. И. Техническая термодинамика [Электронный ресурс] : учебно-методический комплекс / Ю. И. Шаров ; Новосиб. гос. техн. ун-т. Новосибирск, 2013. 1 электрон. опт. диск (CD-ROM). Режим доступа: http://elibrary.nstu.ru/source?bib_id=vtls000182684. Загл. с этикетки диска.
- **5.** Чичиндаев А. В. Компьютерное моделирование физических процессов [Электронный ресурс] : электронный учебно-методический комплекс / А. В. Чичиндаев, Н. Н. Евтушенко, И. В. Хромова ; Новосиб. гос. техн. ун-т. Новосибирск, [2013]. Режим доступа: http://elibrary.nstu.ru/source?bib id=vtls000180029. Загл. с экрана.
- 6. Хромова И. В. Теплотехника [Электронный ресурс]: электронный учебно-методический комплекс / И. В. Хромова, Н. Н. Евтушенко; Новосиб. гос. техн. ун-т. Новосибирск, [2013]. Режим доступа: http://elibrary.nstu.ru/source?bib id=vtls000180026. Загл. с экрана.
- 1. 36C HITY: http://elibrary.nstu.ru/
- 2. ЭБС «Издательство Лань» : https://e.lanbook.com/
- 4. 9EC "Znanium.com": http://znanium.com/

8.1

- 1. Теплопередача. Ч. 1: методическое пособие для 2-3 курсов специальностей 160201, 160202, 160901, 160702, 280202, 140401 (направление 160100) ФЛА; специальностей 260501, 260202, 080401 ЭМФ; специальности 260601 МТФ всех форм обучения и ЗОТФ / Новосиб. гос. техн. ун-т; [сост.: Ю. В. Дьяченко, М. С. Макаров, М. А. Пахомов]. Новосибирск, 2010. 42, [2] с.: ил.. Режим доступа: http://www.library.nstu.ru/fulltext/metodics/2010/3944.pdf
- **2.** Термодинамика : методические указания к лабораторным работам для 2-3 курсов ФЛА, ФЭН, МТФ дневного отделения / Новосиб. гос. техн. ун-т ; [сост.: М. С. Макаров, М. В. Горбачев]. Новосибирск, 2016. 33, [3] с. : ил., табл.. Режим доступа: http://elibrary.nstu.ru/source?bib_id=vtls000233988
- **3.** Газовые циклы: методические указания к расчетно-графическим работам для 2-3 курсов ФЛА (специальности 160201, 160202, 150300) дневного отделения / Новосиб. гос. техн. ун-т; [сост. Ю. В. Дьяченко, А. С. Захаров]. Новосибирск, 2007. 34, [1] с.: ил.. Режим доступа: http://www.library.nstu.ru/fulltext/metodics/2007/3319.rar
- **4.** Термодинамика и теплопередача : методические указания к лабораторным работам для 2-3 курсов специальностей 160201, 160202, 160901, 160702, 280202, 140401 ФЛА ; 260501, 260202 ЭМФ ; 190603, 260601 МТФ всех форм обучения / Новосиб. гос. техн. ун-т ; [сост. Ю. В. Дьяченко, М. А. Пахомов, В. А. Спарин]. Новосибирск, 2007. 28 с. : ил.. Режим доступа: http://www.library.nstu.ru/fulltext/metodics/2007/3318.rar
- 5. Компьютерное моделирование процессов теплообмена: методические указания к лабораторным и расчетно-графическим работам для 3-4 курсов специальностей 223200.62, 160100.65 ФЛА по дисциплинам "Математическая физика" и "Компьютерное моделирование физических процессов" / Новосиб. гос. техн. ун-т; [сост.: И. В. Хромова, Н. Н. Евтушенко]. Новосибирск, 2013. 22, [2] с.: ил... Режим доступа: http://elibrary.nstu.ru/source?bib_id=vtls000190497
- **6.** Термодинамика : методические указания к лабораторным работам по курсам "Теплотехника", "Термодинамика и теплопередача" для 2-3 курсов специальностей 120202, 260501 ФМА; 190603, 260601 МТФ; 160100, 160202, 223200 ФЛА всех форм обучения / Новосиб. гос. техн. ун-т ; [сост. И. В. Хромова]. Новосибирск, 2012. 26, [1] с. : ил., табл.. Режим доступа: http://elibrary.nstu.ru/source?bib id=vtls000171010

8.2

- 1 Microsoft Office
- 2 Microsoft Windows
- 3 Microsoft Office

9. -

	1		
		- , ,	
L)	
Г			

1	(
	Internet)	

Федеральное государственное бюджетное образовательное учреждение высшего образования «Новосибирский государственный технический университет»

Кафедра технической теплофизики

"УТВЕРЖДАЮ	,,
ДЕКАН ФЛА	١
д.т.н., профессор С.Д. Саленко)
	٠.

ФОНД ОЦЕНОЧНЫХ СРЕДСТВ

УЧЕБНОЙ ДИСЦИПЛИНЫ

Термодинамика и теплопередача

Образовательная программа: 24.03.04 Авиастроение , профиль: Самолето и вертолетостроение

1. Обобщенная структура фонда оценочных средств учебной дисциплины

Обобщенная структура фонда оценочных средств по дисциплине Термодинамика и теплопередача приведена в Таблице.

Таблица

Формируемые компетенции	Показатели сформированности компетенций (знания, умения, навыки)	Темы	Этапы оценки компетенций	
			Мероприятия текущего контроля (курсовой проект, РГЗ(Р) и др.)	Промежуточная аттестация (экзамен, зачет)
ОПК.10 способность владеть навыками математического моделирования процессов и объектов на базе стандартных пакетов исследований	33. знать основные законы теплопередачи	Лучистый теплообмен Перенос тепла теплопроводностью Свободная конвекция. Вынужденная конвекция Теплообмен в трубах и каналах	Отчет по лабораторной работе	Экзамен, вопрсы 32–34, 14–17
ОПК.10	34. знать основные законы термодинамики	Второй закон термодинамики Основные законы термодинамики Первый закон термодинамики Теплоёмкость Термодинамические процессы Уравнение состояния идеального газа Энтропийные диаграммы термодинамических циклов	Отчет по лабораторной работе, РГЗ	Экзамен, вопросы 3– 14
ОПК.10	у3. уметь рассчитывать параметры процессов теплопередачи в элементах технических систем	Лучистый теплообмен Перенос тепла теплопроводностью Свободная конвекция. Вынужденная конвекция Теплообмен в трубах и каналах Теплообменные аппараты	Отчет по лабораторной работе	Экзамен, вопросы 32– 34, 14–17, 25–28
ОПК.10	у4. уметь рассчитывать термодинамические параметры физических процессов	Второй закон термодинамики Первый закон термодинамики Теплоёмкость Термодинамические процессы Уравнение состояния идеального газа Энтропийные диаграммы термодинамических циклов		Экзамен, вопросы 3– 14
ОПК.11 способность к проведению экспериментов по заданной методике и анализу их результатов	у1. уметь применять основные методы физического исследования явлений и свойств объектов материального мира	Основные положения учения о теплообмене Уравнение состояния идеального газа		Экзамен, вопросы 1–4
ПК.1/ПК способность к решению инженерных задач с использованием базы знаний математических и естественнонаучны х дисциплин	39. знать свойства и модели жидкости и газов	Теплоёмкость		Экзамен, вопросы 5-6

2. Методика оценки этапов формирования компетенций в рамках дисциплины.

Промежуточная аттестация по **дисциплине** проводится в 3 семестре - в форме экзамена, который направлен на оценку сформированности компетенций ОПК.10, ОПК.11, ПК.1/ПК.

Кроме того, сформированность компетенций проверяется при проведении мероприятий текущего контроля, указанных в таблице раздела 1.

В 3 семестре обязательным этапом текущей аттестации является расчетно-графическое задание (РГЗ). Требования к выполнению РГЗ, состав и правила оценки сформулированы в паспорте РГЗ.

Общие правила выставления оценки по дисциплине определяются балльно-рейтинговой системой, приведенной в рабочей программе учебной дисциплины.

На основании приведенных далее критериев можно сделать общий вывод о сформированности компетенций ОПК.10, ОПК.11, ПК.1/ПК, за которые отвечает дисциплина, на разных уровнях.

Общая характеристика уровней освоения компетенций.

Ниже порогового. Уровень выполнения работ не отвечает большинству основных требований, теоретическое содержание курса освоено частично, пробелы могут носить существенный характер, необходимые практические навыки работы с освоенным материалом сформированы не достаточно, большинство предусмотренных программой обучения учебных заданий не выполнены или выполнены с существенными ошибками.

Пороговый. Уровень выполнения работ отвечает большинству основных требований, теоретическое содержание курса освоено частично, но пробелы не носят существенного характера, необходимые практические навыки работы с освоенным материалом в основном сформированы, большинство предусмотренных программой обучения учебных заданий выполнено, некоторые виды заданий выполнены с ошибками.

Базовый. Уровень выполнения работ отвечает всем основным требованиям, теоретическое содержание курса освоено полностью, без пробелов, некоторые практические навыки работы с освоенным материалом сформированы недостаточно, все предусмотренные программой обучения учебные задания выполнены, качество выполнения ни одного из них не оценено минимальным числом баллов, некоторые из выполненных заданий, возможно, содержат ошибки.

Продвинутый. Уровень выполнения работ отвечает всем требованиям, теоретическое содержание курса освоено полностью, без пробелов, необходимые практические навыки работы с освоенным материалом сформированы, все предусмотренные программой обучения учебные задания выполнены, качество их выполнения оценено числом баллов, близким к максимальному.

Федеральное государственное бюджетное образовательное учреждение высшего образования «Новосибирский государственный технический университет» Кафедра технической теплофизики

Паспорт экзамена

по дисциплине «Термодинамика и теплопередача», 3 семестр

1. Методика оценки

Экзамен проводится в устной форме, по билетам. Билет формируется по следующему правилу: первый вопрос выбирается из диапазона вопросов 1-15, второй вопрос из диапазона вопросов 16-34 (список вопросов приведен ниже). В ходе экзамена преподаватель вправе задавать студенту дополнительные вопросы из общего перечня (п. 4).

Билет содержит два вопроса (первый из части курса "термодинамика", второй из части курса "теплопередача") и задачу (одна из задач, решённых на практических занятиях)

Задача решается письменно, и её решение предоставляется преподавателю для проверки. Правильно решённая задача оценивается максимальным баллом 20. Ошибки при решении задач снижают баллы, и итоговый результат оценивается от 0 до 19 баллов.

Форма экзаменационного билета

НОВОСИБИРСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ

Факультет ФЛА Билет № ____ к экзамену по дисциплине «Термодинамика и теплопередача» 1. Вопрос 1 2. Вопрос 2. 3. Задача

Составил: к.т.н., доцент ______ Макаров М.С.

Утверждаю: зав. кафедрой ТТФ ______ Чичиндаев А.В.

2. Критерии оценки

Ответ на экзаменационный билет считается **неудовлетворительным**, если студент не ответил ни на один из теоретических вопроса, задача не решена. Оценка составляет от 0 до 24 баллов.

(подпись)

(дата)

Ответ засчитывается на **пороговом** уровне, если студент ответил на два теоретических вопроса, но имеются ошибки. Оценка составляет от 25 до 28 баллов.

Ответ засчитывается на **базовом** уровне, если студент ответил на три теоретических вопроса, но имеются ошибки, оценка составляет от 29 до 34 баллов.

Ответ засчитывается на **продвинутом** уровне, если студент ответил на все вопросы, отсутствуют ошибки, оценка составляет от 35 до 40 баллов.

3. Шкала оценки

Экзамен считается сданным, если сумма баллов по всем заданиям со ставляет не менее 20 баллов (по 40 балльной шкале).

В общей оценке по дисциплине экзаменационные баллы учитываются в соответствии с правилами балльно-рейтинговой системы, приведенными в рабочей программе лисциплины.

4. Шкала оценки

Ответ на теоретическую часть билета принимается в устной форме. Ответ на каждый вопрос оценивается максимальным баллом 10. Ответ на вопрос должен быть максимально полным.

Оценивается в первую очередь понимание предмета. Ошибки при записи коэффициентов, степеней и т.д. не учитываются при ясном изложении сути вопроса.

Считается, что студент прошёл аттестацию и сдал экзамен, если он в общей сложности набрал более 22 баллов.

Билет с вопросами выбирается случайным образом.

На подготовку к ответу отводится 40 минут.

Использование литературы, конспектов, аудиотехники, телефонов и т.п. запрещено.

Отлучение из аудитории по любой причине только с заменой билета и снижением максимального балла на 10.

5. Вопросы к экзамену по дисциплине «Термодинамика и теплопередача»

- 1. Основные положения и определения термодинамики (термодинамическая система, термодинамический процесс, параметры состояния).
- 2. Внутренние параметры состояния (давление, температура, плотность).
- 3. Уравнение состояния идеального газа. Газовые смеси.
- 4. Энергия. Энтальпия. Теплота и работа.
- 5. Теплоёмкость, виды теплоёмкости, средняя и истинная теплоёмкости.
- 6. Теплоёмкость идеального газа. Теплоёмкость газовой смеси. Отношение теплоёмкостей.
- 7. Взаимодействие системы с окружающей средой. Уравнение первого закона термодинамики.
- 8. Политропные процессы. Работа и теплота политропного процесса.
- 9. Исследование политропных процессов. Определение показателя политропы.
- 10. Основные положения второго закона. Термодинамические циклы.
- 11. Цикл Карно. Теорема Карно. Интеграл Клаузиуса.
- 12. Энтропия (физический смысл энтропии). Изменение энтропии газа в термодинамических процессах.
- 13. Т-Ѕ диаграммы. Цикл Карно на Т-Ѕ диаграмме.
- 14. Теория теплообмена (основные понятия). Температурное поле. Температурный градиент.
- 15. Передача тепла через плоскую стенку в стационарных условиях.
- 16. Коэффициент теплоотдачи. Передача тепла через плоскую стенку с учётом теплообмена с внешней средой.
- 17. Передача тепла через цилиндрическую стенку. Критический диаметр тепловой изоляции.
- 18. Краткие сведения из газодинамики неизотермического течения.
- 19. Элементы теории подобия и их применение в анализе конвективного теплообмена.
- 20. Связь между теплоотдачей и трением.

- 21. Теплоотдача при свободном движении жидкости в большом объёме.
- 22. Теплоотдача при свободном движении жидкости в ограниченном пространстве.
- 23. Вынужденное движение жидкости (газа). Понятие пограничного слоя.
- 24. Характер движения жидкости вдоль поверхности. Теплоотдача при ламинарном пограничном слое.
- 25. Особенности движения и теплообмена в трубах и каналах.
- 26. Теплоотдача при вязкостном ламинарном течении жидкости в гладких трубах круглого сечения.
- 27. Теплоотдача при турбулентном течении жидкости в трубах различного сечения. Теплоотдача при ламинарном вязкостно-гравитационном режиме течения.
- 28. Теплоотдача в изогнутых трубах (змеевиках). Теплоотдача в трубах с закруткой потока.
- 29. Дополнительные условия подобия при течении газов с большими скоростями
- 30. Особенности процесса теплоотдачи в высокоскоростной газовый поток
- 31. Методика расчета теплоотдачи в высокоскоростных потоках
- 32. Теплообмен излучением. Основные понятия
- 33. Теплообмен излучением между твёрдыми телами
- 34. Теплообмен излучением между твёрдыми телами при наличии экрана

Федеральное государственное бюджетное образовательное учреждение высшего образования «Новосибирский государственный технический университет» Кафедра технической теплофизики

Паспорт расчетно-графического задания

по дисциплине «Термодинамика и теплопередача», 3 семестр

1. Методика оценки

В рамках расчетно-графического задания по дисциплине студенты должны рассчитать основные параметры прямого термодинамического цикла в соответствии с исходными данными.

При выполнении расчетно-графического задания студенты должны провести расчет и анализ основных термодинамических и теплофизических параметров в узловых точках цикла.

Обязательные структурные части РГЗ.

- 1. Титульный лист.
- 2. Задание к РГЗ (согласно варианту).
- 3. Методика расчета и графические материалы.
- 4. Выводы по работе.

Оцениваемые позиции:

- 1. Правильность оформления работы, согласно ЕСКД.
- 2. Правильность применения и использования подходов при решении задач термодинамики.
 - 3. Наглядность оформления и выполнения графических данных.
- 4.Степень проработанности материалов и описание применяемых подходов и методов.

2. Критерии оценки

- работа считается не выполненной, если студентом выполнены не все пункты, указанные в задании к РГЗ, расчеты выполнены при наличии принципиальных ошибок, графические данные не соответствуют расчетным данным, оценка составляет 9 и менее баллов.
- работа считается выполненной **на пороговом** уровне, студентом выполнены не все пункты, указанные в задании к РГЗ, расчеты выполнены при наличии принципиальных ошибок, графические данные соответствуют расчетным данным, оценка составляет 19 и менее баллов.
- работа считается выполненной **на базовом** уровне, если студентом выполнены все пункты, указанные в задании к РГЗ, расчеты выполнены при отсутствии принципиальных ошибок, графические данные соответствуют расчетным данным, оценка составляет 29 и менее баллов.
- работа считается выполненной **на продвинутом** уровне, студентом выполнены все пункты, указанные в задании к РГЗ, расчеты выполнены при качественно и без ошибок, графические данные соответствуют расчетным данным, оценка составляет 40 и менее баллов.

3. Шкала оценки

В общей оценке по дисциплине баллы за РГЗ учитываются в соответствии с правилами балльно-рейтинговой системы, приведенными в рабочей программе дисциплины.

4. Примерный перечень тем РГЗ

Тема РГЗ определяется в соответствии с номером варианта. Исходные параметры для расчетов приведены в соответствующем методическом пособии.