Федеральное государственное бюджетное образовательное учреждение высшего образования

«Новосибирский государственный технический университет»

«УТВЕРЖДАЮ»

Заведующий отделом ОПКВК

В.П. Драгунов

марта 2025 г.

ПРОГРАММА ВСТУПИТЕЛЬНОГО ЭКЗАМЕНА В АСПИРАНТУРУ

по научной специальности

2.4.6 Теоретическая и прикладная теплотехника

(технические науки)

Программу разработали:		
программу разраоотали.	Amf	д.т.н., проф. А.В. Чичиндаев
	Maf	к.т.н., доцент М.В. Горбачев
Декан ФЛА		д.т.н., доцент Д.А. Чинахов
Ответственный за основн образовательную програм		
		д.т.н., проф. А.В. Чичиндаев

Программа обсуждена на заседании ученого совета факультета летательных

аппаратов, протокол № 2 от «24» марта 2025г.

Введение

В основу программы вступительных экзаменов положены следующие дисциплины: термодинамика и теплопередача, тепломассообмен, теплообменные устройства, молекулярная физика и термодинамика, математическое моделирование теплофизических процессов.

Вступительные испытания для поступающих в аспирантуру проводятся с целью определения степени готовности поступающего к освоению основной образовательной программы высшего образования — программы подготовки научных и научно-педагогических кадров в аспирантуре по научной специальности 2.4.6. «Теоретическая и прикладная теплотехника».

Вступительные испытания проводятся в письменной форме с использованием экзаменационных билетов. Экзаменационные билеты разрабатываются кафедрой Технической теплофизики.

Перечень экзаменационных вопросов для вступительного экзамена по научной специальности

2.4.6. «Теоретическая и прикладная теплотехника»

Модуль 1. Термодинамика

- 1. Основные положения и определения термодинамики. Термодинамическая система, термодинамический процесс, параметры состояния.
- 2. Внутренние параметры состояния (давление, температура, плотность).
 - 3. Уравнение состояния идеального газа. Газовые смеси.
- 4. Влажный воздух. Основные понятия. Относительная влажность, влагосодержание. Энтальпия. I-d диаграмма влажного воздуха.
 - 5. Энергия. Энтальпия. Теплота. Работа.
- 6. Теплоемкость, виды теплоемкости, средняя и истинная теплоемкости.
- 7. Теплоемкость идеального газа. Теплоемкость газовой смеси. Отношение теплоемкостей.

- 8. Взаимодействие системы с окружающей средой. Уравнение первого закона термодинамики.
- 9. Термодинамические процессы. Представление термодинамических процессов в P-v и T-s диаграммах.
- 10. Изохорный процесс. Изобарный процесс. Изотермический процесс. Политропные процессы.
- 11. Политропные процессы. Определение показателя политропы. Работа и теплота политропного процесса.
 - 12. Основные положения второго закона. Термодинамические циклы.
 - 13. Цикл Карно. Теорема Карно. Интеграл Клаузиуса.
- 14. Энтропия (физический смысл энтропии), Изменение энтропии газ в термодинамических процессах.
 - 15. Процессы сжатия в компрессоре.
- 16. *Т-s* диаграмма. Цикл Карно. Основные параметры. Термодинамический КПД.
- 17. Холодильные циклы. Обратные тепловые циклы и процессы. Холодильные установки.
 - 18. Цикл воздушной холодильной установки.
 - 19. Цикл парокомпрессионной холодильной установки.
 - 20. Цикл пароэжекторной холодильной установки.
 - 21. Цикл термоэлектрической холодильной установки.

Модуль 2. Теплопередача

- 22. Теория теплообмена (основные понятия). Температурное поле. Температурный градиент. Уравнение теплопроводности.
 - 23. Теплопроводность плоской стенки в стационарных условиях.
 - 24. Теплопередача через плоскую стенку. Коэффициент теплоотдачи.
- 25. Теплопроводность цилиндрической стенки. Критический диаметр тепловой изоляции.
 - 26. Краткие сведения из газодинамики неизотермического течения.

- 27. Элементы теории подобия и их применение в анализе конвективного теплообмена.
 - 28. Связь между теплоотдачей и трением.
 - 29. Теплообмен при свободном движении жидкости в большом объеме.
- 30. Теплообмен при свободном движении жидкости в ограниченном пространстве.
- 31. Вынужденное движение жидкости (газа). Тепловой и гидродинамический пограничные слои.
- 32. Характер движения жидкости вдоль вертикальной поверхности. Теплоотдача при ламинарном пограничном слое.
 - 33. Особенности движения и теплообмена в трубах и каналах.
- 34. Теплоотдача при ламинарном течении жидкости в гладких трубах и каналах.
 - 35. Теплоотдача при турбулентном течении жидкости в трубах.
 - 36. Теплоотдача в изогнутых трубах (змеевиках).
 - 37. Теплообмен излучением. Основные понятия
 - 38. Теплообмен излучением между твердыми телами.

Модуль 3. Теплообменные аппараты

- 39. Теплообменные аппараты. Общие сведения.
- 40. Классификация теплообменных аппаратов.
- 41. Поверочный и конструкторский расчеты теплообменных аппаратов.
- 42. Теплообменные аппараты: рекуперативные, регенеративные, смесительные.
 - 43. Уравнения теплового баланса и теплопередачи.
 - 44. Средний температурный напор.
- 45. Расчет поверхности теплообмена, конечной температуры теплоносителей.
- 46. Основы гидравлического расчета теплообменников. Определение мощности, затрачиваемой на прокачку теплоносителей.

Правила аттестации

Оценка знаний поступающего в аспирантуру осуществляется в виде экзамена в устной форме по билетам. Билет состоит из трех теоретических вопросов — по одному из каждого из представленных выше модулей. По результатам ответа на вопросы по билету и при необходимости на дополнительные вопросы поступающий в аспирантуру может получить следующие оценки:

«отлично» – на три вопроса в билете даны правильные ответы, полностью раскрывающие суть вопросов, и на дополнительные вопросы, заданные комиссией поступающий в аспирантуру ответил правильно и полностью;

«хорошо» – на вопросы даны правильные, но не полные ответы. Раскрыта суть рассматриваемого процесса, но не приведены примеры. На дополнительные вопросы, заданные комиссией поступающий в аспирантуру ответил правильно и полностью;

«удовлетворительно» — только на два из вопросов дан правильный ответ, но на дополнительные вопросы, заданные комиссией поступающий в аспирантуру ответил правильно и полностью;

«неудовлетворительно» — на три вопроса по билету соискатель ответил не правильно.

Основная литература

- 1. Горбачев М.В. Тепломассообмен: Учебное пособие / М.В. Горбачев. Новосибирск: Изд-во НГТУ, 2015. 441 с.
- 2. Цветков Ф.Ф., Григорьев Б.А. Тепломассообмен: Учебное пособие для вузов. 2-е изд., исп. и доп. М: Издательство МЭИ. 2005.
- 3. Цирельман Н.М. Техническая термодинамика : учебное пособие для вузов / Н.М. Цирельман. 3-е изд., стер. Санкт-Петербург : Лань, 2021. 352 с.
- 4. Дерюгин В.В. Тепломассообмен : учебное пособие / В.В. Дерюгин, В.Ф. Васильев, В.М. Уляшева. Санкт-Петербург : Лань, 2020. 240 с.

- 5. Термодинамика: учеб. пособие. В 2 т. Т. 1 / В. П. Бурдаков, Б. В. Дзюбенко, С. Ю. Меснянкин, Т. В. Михайлова. М.: Дрофа, 2009. 480 с.
- 6. Новиков, И. И. Термодинамика: учеб. пособие / И.И. Новиков. СПб.: Лань, 2009. 592 с.

Дополнительная литература

- 1. Болгарский А.В. и др. Термодинамика и теплопередача. Учебник для вузов. М.: Высш. Школа, 1975. 495 с.
- 2. Исаев С.И., Кожинов И.А., Кофанов В.И. и др. Теория тепломассообмена: Учебник для вузов / Под ред. А.И. Леонтьева. М.: Высш. Школа, 1979. 495 с.
- 3. Исаченко В.П. Теплопередача: учебник для вузов / В.П. Исаченко, В.А. Осипова, А.С. Сукомел. М.: Энергиздат, 1981. 416 с.
- 4. Крутов В.И., Исаев С.И., Кожинов И.А. и др. Техническая термодинамика: Учеб. для машиностроит. спец. вузов / Под ред. В.И. Крутова. 3-е изд., перераб. и доп. М.: Высш. шк., 1991. 384 с.
- 5. Луканин В.Н., Шатров М.Г., Камер Г.М. и др. Теплотехника / Под ред. В.Н. Луканина. М.: Высш. шк., 1999. 671 с.
- 6. Михеев М.А. Основы теплопередачи / М.А. Михеев, И.М. Михеева. М.: Энергия, 1973. 319 с.