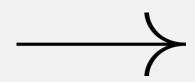


Силовая интеллектуальная электроника– основа эффективной энергетики.

СТРАТЕГИЧЕСКИЙ ПРОЕКТ «СИЛОВАЯ ЭЛЕКТРОНИКА И ИНТЕЛЛЕКТУАЛЬНАЯ ЭНЕРГЕТИКА» СП-1


Руководитель проекта проф. Харитонов С.А. Итоговый отчёт за 2023 г.

ПРОБЛЕМА

Технологический суверенитет РФ в силовой электротехнике (Критическая технология, утверждённая указом президента)

ЦЕЛЬ СТРАТЕГИЧЕСКОГО ПРОЕКТА

Создание новой высокотехнологичной отрасли систем хранения электроэнергии в России и лидирующих технологий по проектированию, изготовлению и эксплуатации интеллектуальных систем силовой электроники и энергетики, обеспечивающих высокую энергетическую эффективность автономных передвижных и стационарных объектов.

КАФЕДРЫ:

ЭЭ, ППиМЭ, КТРС, ТОР, ЭП, ЭТК, ЭАПУ,

ФАКУЛЬТЕТЫ:

- 1. Радиотехники и электроники
- 2. Мехатроники и автоматизации
- 3. Энергетики

- 1. Институт Силовой Электроники:
- А. Дизайн Центр «Силовая электроника»
- Б. Лаборатория Криогенной электроники

В. Лаборатория перспективных технологий микроэлектроники

ЭНЕРГОЭФФЕКТИВНОСТЬ

2. Цифро-физический комплекс 3. НИЛ квантовой криогенной электроники 4. Центр компетенций БПЛА 5. НИЛ «Энергосберегающие технологии»

- 4. Летательных аппаратов
- 5. Автоматики и вычислительной техники
- 6. Механико-технологический

ЭМ, АЭЭС, ВТ, РПиРПУ, СиВС, ХХТ

Перечень проводимых в СП-1 научных исследований

- 1. Разработка технологии проектирования и производства силовых гибридных модулей в ДЦ СЭ НГТУ.
- 2. Разработка схем и конструкции мощных гибридных модулей 2-го поколения для энергопреобразующей аппаратуры КА.
- 3. Разработка схем и конструкции универсальных мощных гибридных модулей 1-го поколения для управления трёхкаскадными генераторами ЛА.
- 4. Разработка SPICEмоделей отечественных компонентов силовой электроники, а также гибридной силовой микросборки 1-го поколения. Проф. Харитонов С.А.

- 1. Разработка и создание линейки модульных контроллеров для электрозарядных станций (ЭЗС) электромобилей по стандарты GB/T, ChadeMo, Type 2.
- 2. Разработка и передача индустриальному партнеру конструкторской документации для производства контроллеров и ЭЗС.
- 3. Исследование и разработка электрозарядной станции с накопительным устройством.
- 4. Исследование и разработка отечественного эмулятора электромобиля, позволяющего имитировать процессы заряда по стандартам GB/T, ChadeMo, Type2. Проф. Щуров Н.И.

- 1. Разработка конструкторской и технологической документации, изготовление макетного образца асинхронного двигателя гидропривода скважинного диагностического зонда.
- 2. Исследование макетного образца асинхронного двигателя гидропривода скважинного
- диагностического зонда.
- 3. Разработка конструкции, технологии изготовления и исследование БПЛА типа «Крыло» (БПЛА -Александр 2.0).
- 4. Разработка конструкции и агрегатов микро БПЛА «ШМЕЛЪ» 2-го поколения, изготовление макетного образца Доц. Котин Д.А..

- 1. Разработка специализированных способов управления режимами электрических сетей (ЭС) с распределённой малой генерацией (РМГ)
- 2. Разработка комплекса прототипов и опытных образцов автоматик управления режимами ЭС с РМГ.
- 3. Подготовка и проведение экспериментальных стендовых исследований и испытаний автоматик.
- 4. Разработка методик проектирования объектов с малой генерацией .
- 5. Разработка коммерческих версий Симулятора управления режимами Минигрид. Проф. Фишов А.Г.

- 1. Разработан и изготавливается конструктивный образец агродрона «Сарма НВ».
- 2. Разработка конструкции и технология изготовления мотор-генератор для гибридной силовой установки агродрона «Сарма».
- 3. Разработка конструкции и технологии изготовления силового электронного модуля для гибридной силовой установки агродрона «Сарма».
- 4. Проектирование гибридной силовой установки для агродрона «Сарма». Проф. Зверков И.Д.

- Дизайн-центр проектирования и производства гибридных микросборок энергопреобразующей аппаратуры для аэрокосмического применения, рук. Харитонов С.А.
- УЗапущена первая очередь и завершается подготовка к запуску второй очереди Дизайн-Центра Силовой Электроники НГТУ для проектирования и производства гибридных силовых модулей ЭПА аэрокосмических аппаратов. Проект разработан совместно и в интересах АО «Решетнев» и АО «НЗПП Восток».

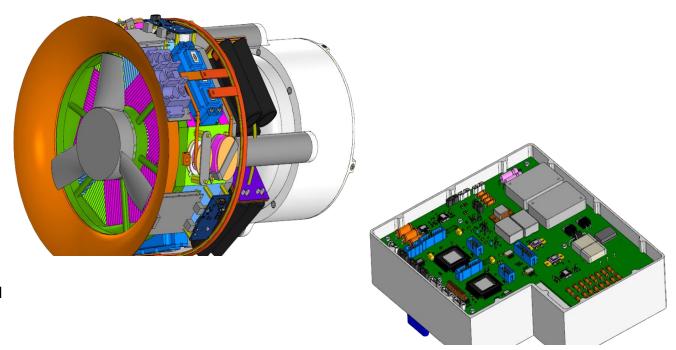
- ▶ Разработаны, изготовлены, предварительно испытаны гибридные силовые модули 1-го поколения и завершается подготовка к испытаниям модулей 2-го поколения (ГМС) с использованием двух технологий преобразования электроэнергии для ЭПА КА по техническим требованиям АО «Решетнев». Передовые технические характеристики обеспечиваются высокой удельной энергетической эффективностью более 1000Вт/кг а также мощностью модуля более 1кВт.
- ➤ Так первое поколение имело удельные показатели 1100Вт/кг, второе 6250Вт/кг при мощности модулей 1000Вт. Данные показатели свидетельствуют о возможности достижения РФ научно-технологического лидерства в создании энергопреобразующей аппаратуры для аэрокосмических аппаратов. Обеспечить такой уровень удельных показателей стало возможным за счёт применения авторских схемотехнических решений, высокой частоты преобразования, гибридных интегральных технологий и 3D конструирования.

Поколение 2 — Длинна — 78 мм, Ширина — 22,5 мм, Высота — 77 мм, Вес 1500 Грамм, Год — 2023.

Поколение 0 - Длинна - 190 мм, Ширина -150 мм, Высота -50 мм, Вес 1500 Грамм, Год -2020.

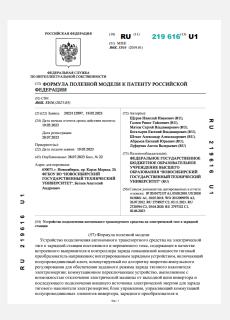
Поколение 1 – Длинна – 105 мм, Ширина – 30 мм, Высота – 100 мм, Вес 900 Грамм, Год – 2021 Поколение 1.5 – Длинна – 75 мм, Ширина – 25,5 мм, Высота – 90 мм, Вес 600 Грамм, Год – 2022.

- Создан Региональный Распределённый Центр Силовой электроники для опытного сборочного производства (по варианту «foundry») гибридных модулей силовой электроники энергопреобразующей аппаратуры для перспективных аэрокосмических систем совместно с АО «Решетнев», ТУСУР, ,АО «НЗПП Восток», ООО «СибИС».
- Разработан и изготовлен образец первого поколения ГМС универсального БРЗУ для трёхкаскадных авиационных генераторов.



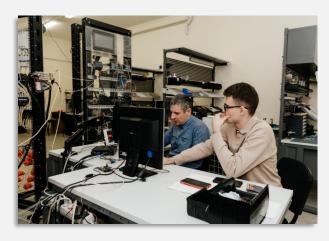
▶ Разработаны и изготовлены опытные образцы уникальных мехатронных систем специального назначения для авиационного применения (в частности, ПАК ДА – «Посланник» и БПЛА) на базе отечественных систем силовой электроники с использованием SiC транзисторов и синхронных электрических машин с возбуждением от SmCo высококоэрцитивных магнитов. Удельной энергетической эффективностью мехатронной системы в целом при воздушном охлаждении менее 1кг/кВт, электродвигателя менее 0.21кг/кВт.

Одним из самых востребованных направлений разработок ИСЭ НГТУ являются **мехатронные системы**.


Одно из преимуществ разрабатываемых систем заключается в их применении независимо от летательного аппарата.

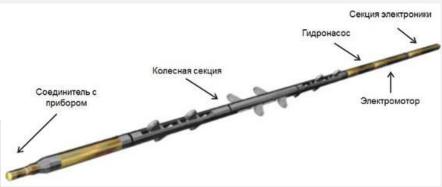
Системы **легко масштабируются** и адаптируются **под задачи управления электрическими двигателями** как разной мощности, так и разной конструкции.

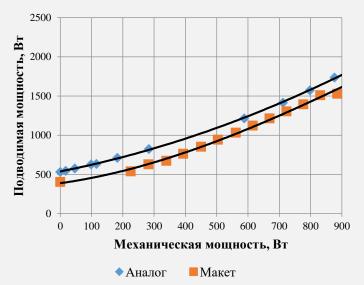
- Разработка зарядных станций для электротранспорта, рук. Щуров Н.И.
- ▶ Изготовление по разработанной конструкторской документации опытной промышленной партии контроллеров GB/T, ChadeMo, Туре 2 на производственной базе индустриального партнёра АО НПП «Радиосвязь» (декабрь 2023 г.).


- ▶ Изготовление опытных образцов электрозарядных станций электромобилей по стандартам GB/T, ChadeMo, Туре 2 на производственной базе у индустриального партнера (декабрь 2023г.)
- Изготовление опытного образца электрозарядной станции электромобили с накопительным устройством совместно с индустриальным партнёром ООО «Новосибирский конденсаторный завод»;

создан программно-аппаратный комплекс для ЭЗС, обеспечивающий заряд электромобиля в онлайн режиме.

- Создан программно-аппаратный комплекс для ЭЗС, обеспечивающий заряд электромобиля в онлайн режиме.
- > Создана лаборатория и подготовлен коллектив компетентных разработчиков современных ЭЗС.





- Центр мехатроники НГТУ-НЭТИ, рук. Котин Д.А.
- Разработан асинхронный двигатель гидропривода скважинного диагностического зонда. Потребитель Велтэк Ойлфилд Сервисес

Параметр	Ед. измерения	Значение
Первый рег	жим	
Питающая частота	Гц	60
Синхронная скорость вращения	об/мин	3600
Потребляемая мощность	Вт	до 1400±50
Ток	A	до 2,7
Второй рег	жим	
Питающая частота	Гц	105
Синхронная скорость вращения	об/мин	6300
Потребляемая мощность	Вт	до 1400±50
Ток	A	до 2,3

У Изготовлен и испытан пилотный образец асинхронного двигателя гидропривода скважинного диагностического зонда. Потребитель Велтэк Ойлфилд Сервисес

Изготовлен и испытан БПЛА типа «Крыло» (БПЛА -Александр 2.0)

БПЛА «Александр 2.0»

Продолжительность полета	С весом нагрузки 500г.	С весом нагрузки 1750г.				
11071010	3 ч. 17 мин.	1 ч. 40 мин.				
Высота полета	до 5000 м.					
Максимальная	до 2000 г.					
грузоподъемность						
Способ Запуска	с катапульты,					
	функция вертикальн	ого взлета				
Способ посадки	на парашюте,					
	функция вертикальной посадки					
Крейсерская скорость	80 км/час					

Основные тактико-технические характеристики: собственная масса - 7 кг; полезная масса на борту - 2 кг; время полета - 1 час 40 мин; дальность полета с контролем - до 40 км; дальность полета по наперед заданной траектории - 120 км; скорость полета - 80 км/час; способ запуска - катапульта; способ посадки - на парашюте; бортовая камера

Изготовлен и испытан микро БПЛА «ШмелЪ»

Микро БПЛА «ШмелЪ» оснащается:

- камерой видео/фото (640x480) + (1600x1200);
- тепловизором видео/фото 150x120;
- системой помехозащищенности;

Диапазон рабочих температур : -20С...+40С

В состав системы входит:

- 3 БПЛА в контейнере для транспортировки;
- пульт управления;
- система сбора и обработки информации.

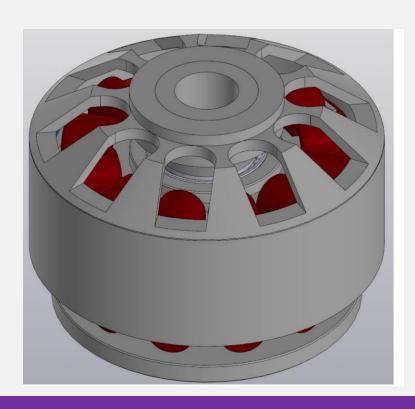
Время разворачивания системы должно не более 10 мин.

- Интеллектуальная энергетика, рук. Фишов А.Г.

Состав, готовность агентов (автоматик) с числом изобретений

- Специализированные способы управления режимами ЭС с РМГ ЭС.
- Лицензионные версии Симулятора управления режимами Минигрид.
- Прототипы линейки автоматик системы децентрализованного мультиагентного управления режимами ЭС с РМГ разного уровня технологической готовности (НТЗ, прототип основного функционала, прототип полного функционала, опытный образец, промышленный образец).
- Методики проектирования объектов РМГ.

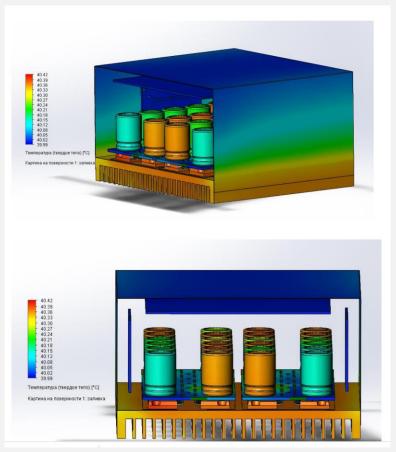
			•	*	-
	Nº	Агент (Автоматика)	нт3	Прототип	Опытный (пром) образец
V		Агент комплексного			
	1	управления режимом ЛИЭС	4 изобр		
	2	Агент интеллектуального регулирования частоты и мощности электростанции	1 изобр		
	3	Агент интеллектуального регулирования напряжения в узле сети	1 изобр		
	4	Агент интеллектуального управления сетевым выключателем	1 заявка		
Ĭ	5	Агент интеллектуальной синхронизации ЭСт с внешней сетью	1 изобр		
	6	Агент экспресс отделения ЛИЭС от внешней сети	1 из		
	7	Агент экспресс ограничения и снижения частоты			
	8	Агент контроля успешности пуска крупных асинхронных двигателей	1 заявка		
	9	Агент администрирования устройств МАСУ и off line мониторинга			


- Универсальное беспилотное воздушное судно «Сарма», рук. Зверков И. Д.
 - Разработана и изготавливается конструкция агродрона «Сарма НВ»

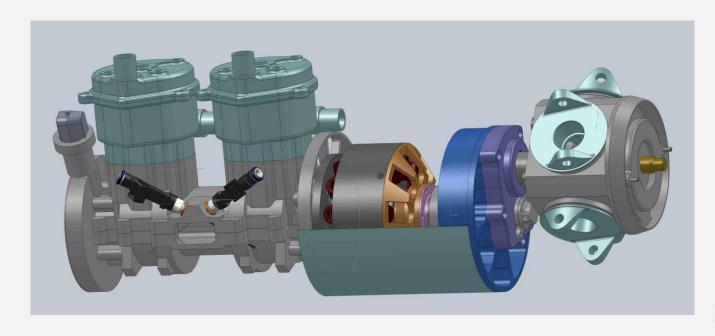
Агродрон был продемонстрирован на выставках Архипелаг 2023, Технопром 2023 и Золотая Долина 2023

Nº	Характеристика	Значение
1	Сухой вес	120 кг
2	Взлётный вес	250 кг
3	Полезная нагрузка	100 кг
4	Запас топлива	30 кг
5	Размах	12.2 M
6	Длина	5.5 M
7	Высота	1.5 M
8	Крейсерская скорость	100 км/ч
9	Максимальная скорость	140 км/ч
10	Скорость сваливания	53 км/ч
11	Длина разбега	40 M
12	Длина пробега	50 M
13	Тип силовой установки	гибридная
14	Мощность винтомоторной группы	20 кВт
15	Скороподъёмность	4.5 m/c
16	Продолжительность полёта	12 час
17	дальность	1200 км
18	Расход топлива на крейсерском режиме	1.8 л/час
19	Расход топлива для набора 3000 м	1 л

- Спроектирован и изготавливается мотор-генератор для гибридной силовой установки агродрона «Сарма»
- Использование постоянных магнитов в конструкции электрической машины позволяет довести масса-габаритные показатели до предельных значений
- > Высокий КПД наблюдается во всём диапазоне вращения ротора, в том числе и на пониженных скоростях
- Простота конструкции


- Электрическая машина будет одновременно выполнять функции двигателя, стартера и генератора
- Предполагается применение обращённой конструкции с внешним ротором

Параметр	Ед. изм.	Значение
Максимальная мощность	кВт	10
Номинальная частота вращения	об/мин	9000
Максимальное линейное напряжение	В	65 ¹
Максимальный фазный ток	Α	50 ¹
Число фаз обмотки статора		3
Соединение фаз обмотки статора		Δ
Частота выходного напряжения при		
номинальной скорости вращения, не	Гц	100
более		
Напряжение в режиме холостого	В	120
хода, не более	Б	120
Максимальная частота вращения	об/мин	14 000
Минимальная частота вращения	об/мин	2 000


 Спроектирован и изготавливается силовой электронный модуль для гибридной силовой установки агродрона «Сарма»

СМ СТГ представляет собой статический преобразователь постоянного напряжения аккумуляторной батареи в переменное напряжение питания электрической машины с обратимым потоком электрической мощности и предназначен для:

- преобразования напряжения аккумуляторной батареи в напряжение электропитания электрической машины в двигательном и стартерном режимах;
- преобразования энергии электрической машины в генераторном режиме для заряда аккумуляторной батареи и электропитания от АБ бортовых нагрузок.

> Спроектирована и изготавливается гибридная силовая установка для агродрона «Сарма».

Состав установки:

- 1. ВИШ-Винт изменяемого шага
- 2. Понижающий редуктор с двойным расцепителем
- 3. Мотор-генератор
- 4. ДВС- двигатель внутреннего сгорания
- 5. Силовой модуль
- 6. Аккумуляторы
- Разработанная гибридная силовая установка уникальна в России и позволит получить выдающиеся характеристики энергоэффективности агродрону «Сарма НВ»

Количественные результаты (план/факт) СП-1, в том числе в связке с индустриальными партнёрами

Показатели	Объем средств, поступивших от НИОКР, тыс. руб.					ных WoS	ексируемы: Core Colle аций, ед.		Количество индексируемых в базе данных Scopus публикаций типов «Article», «Review», ед.				Объем средств, поступивших от выполнения НИОКР и оказания научнотехнических услуг по договорам с организациями реального сектора экономики и за счет средств бюджета субъекта РФ и местных бюджетов, тыс. руб.			
	план	факт на 29.11	прогноз на 31.12	% вып.	план	факт на 29.11	прогноз на 31.12	% вып.	план	факт на 29.11	прогноз на 31.12	% вып.	план	факт на 29.11	прогноз на 31.12	% вып.
Всего по СП-1	194 000	58 570	80 953	42%	31	19	26	85%	51	46	69	134%	191 000	55 620	74 503	39%
Дизайн-центр проектирования и производства гибридных микросборок, рук. Харитонов С.А.	131 000	38 728,55	53 684,17	41%	15	3	3,00	20%	20	9,2	9,20	46%	131 000	38 028,55	52 984,17	40%
Разработка зарядных станций для электротранспорта, рук. Щуров Н.И.	15 000	4 121,40	7 548,60	50%	10	4,42	8,42	84%	15	11,85	34,00	227%	15 000	4 121,40	7 548,60	50%
Центр мехатроники НГТУ- НЭТИ, рук. Котин Д.А.	26 000	11 220,17	11 720,17	45%	6	1	4,00	67%	10	11,33	11,33	113%	26 000	11 220,17	11 720,17	45%
Интеллектуальная энергетика, рук. Фишов А.Г.	21 000	4 500,00	8 000,00	38%	0	11	11,00	-	4	14	14,00	350%	18 000	2 250,00	5 750,00	32%
Универсальное беспилотное воздушное судно «Сарма», рук. Зверков И. Д.	1 000	0,00	0,00	0%	-	-	-	-	2	0	0,00	0%	1 000	0,00	0,00	0%

Показатели	професс	иональных п	рограмм и ос ального обуче	НОВНЫХ	дополн	ительным імам, в том	оошедших об профессиона и числе посре урсов, чел.	альным	Объем доходов от РИД, права на использование которых были переданы по лицензионному договору (соглашению), договору об отчуждении исключительного права, тыс. руб.				
	план	факт на 29.11	прогноз на 31.12	% вып.	план	факт на 29.11	прогноз на 31.12	% вып.	план	факт на 29.11	прогноз на 31.12	% вып.	
Всего по СП-1	9 455	14 349	14 349	152%	565	1 097	1 097	194%	250	200	200	80%	
Дизайн-центр проектирования и производства гибридных микросборок энергопреобразующей аппаратуры для аэрокосмического применения, рук. Харитонов С.А.	155	155,00	155,00	100%	9	9	9,00	100%	0	0,00	0,00	-	
Разработка зарядных станций для электротранспорта, рук. Щуров Н.И.	1 200	2 588,32	2 588,32	216%	50,00	212	212,00	424%	80	0,00		0%	
Центр мехатроники НГТУ-НЭТИ, рук. Котин Д.А.	8 000	11 605,28	11 605,28	145%	500	876	876,00	175%	50	200,00	200,00	400%	
Интеллектуальная энергетика, рук. Фишов А.Г.	100	0,00	0,00	0%	6	0	0,00	0%	120	0,00		0%	
Универсальное беспилотное воздушное судно «Сарма», рук. Зверков И. Д.	-	-		-	-	-	-	-	-	-		-	

Руководитель	Сумма на 2023г. (руб.)	Количество договоров	Количество индустриальных партнёров
Харитонов С.А.	61 704 934,33	16	12
Щуров Н. И.	14 866 280,00	4	4
Котин Д.А.	11 720170	5	3
Фишов А.Г.	8 000 000,00	1	1

Экосистема ЦТП

Консорциум «Силовая электроника и энергетика»

Производство и проектирование готовых изделий:

Производство микросборок:

Элементная база:

Новые технологии:

Влияние стратегического проекта СП-1на обновление содержания и запуск новых образовательных программ

- ▶ Проведено дополнение лекционного материала обучающим видеоматериалом по технологии сборки микромодулей в содержательную часть дисциплины «Учебная практика: ознакомительная практика» для студентов1 курса направлений 11.03.04 «Электроника и наноэлектроника», 28.03.01 «Нанотехнологии и микросистемная техника»;
- ▶ проводится обновление содержания дисциплины «Физико-химические основы процессов микро- и нанотехнологии» направления 11.03.04 «Электроника и наноэлектроника», 28.03.01 «Нанотехнологии и микросистемная техника»;
- разработана сетевая образовательная программа дополнительного образования, в ходе реализации программы
 29 студентов дневной формы обучения получили свидетельства о профессии рабочего, должности служащего;
- разработаны четыре программы дополнительного образования, по которым прошли обучение в общей сложности 212 человек (НИУ «МЭИ», СевГУ), получены денежные средства в объёме 2 588 320 руб.
- результаты работ по созданию зарядных станций для электротранспорта различной конфигурации и топологии были интегрированы в ряд учебных курсов: «Вычислительные машины, системы и сети», «Электроснабжение электрического транспорта», «Накопители энергии в электротранспортной комплексе»;
- переход к активной форме обучения магистрантов энергетиков управлению режимами энергосистем на базе разработанного тренажера «Симулятор управления Минигид» по дисциплине «Инновационные технологии в энергетике»;
- разработана и реализована программа профессиональной переподготовки «Искусственный интеллект в электроэнергетике и электротехнике».

Влияние проекта на обновление содержания образовательных программ и запуск новых

01

13.04.02

Электроэнергетика и электротехника, магистерская программа «Искусственный интеллект в электроэнергетике и электротехнике» (совместно с ФЭН)

04

13.03/04.02

Электроэнергетика и электротехника (бакалавриат и магистратура)

02

27.04.04

Управление в технических системах, магистерская программа «Искусственный интеллект в промышленной автоматизации» (выпускающие кафедры ЭАПУ и ЭТК)

03

15.04.04

Автоматизация технологических процессов и производств (квалификация: магистр)

в.

программы ДПО: «Синтез современных систем автоматического управления в электроэнергетике и электротехнике»; «Управление промышленными роботами»; «Мехатронные и робототехнические модули и системы»

Разработанный в 2022 году компьютерный симулятортренажер Минигрид.

Тренажер по управлению режимами электрических сетей и энергосистем включен в учебный процесс

Эффекты от реализации проекта

Расширение инновационно - производственной структуры:

- Дизайн-центр Силовой Электроники является единственным производителем мощных гибридных силовых модулей в РФ для аэрокосмических аппаратов;
- Создание лаборатории криогенной силовой электроники совместно с МАИ (НИУ) – в стадии оформления;
- Создание лаборатории Перспективных технологий микроэлектроники;
- Совместно с АО «РиМ» создан инженерно-технический центр «Электроника и интеллектуальная энергетика»;
- Объединённое Молодёжное КБ: с участниками консорциума «Силовая электроника и энергетика» НГТУ, АО «НПО НаукаСофт», АО СЭГЗ и МГТУ ГА принято решение о создании «Объединённого Молодёжного Конструкторского Бюро» (ОМКБ) для разработки электрооборудования авиационного и общепромышленного применения.

02

Открытие новых научных направлений в области силовой электроники и энергетики, повышающих научный имидж НГТУ НЭТИ:

- Криогенная силовая и квантовая электроника;
- Разработка Spice-моделей и электронных двойников;
- Разработка мощных полевых транзисторов с воздушным каналом на базе новых полупроводниковых материалов;
- Разработка и конструирование силовых гибридных модулей;
- Разработка аппаратного, алгоритмического и программного обеспечения Minigrid;
- Разработка технологий проектирования и изготовления БПЛА и их агрегатов;
- Разработка многофункциональных зарядных станций.

03

Повышение уровня подготовки специалистов по силовой электронике и энергетике с целью привлечения для работы в инновационных структурах.

- Подготовлено 9 кандидатов технических наук;
- Проведена модернизация учебных лабораторий, в частности, по электрическим цепям, микроэлектронике, системам вторичного электропитания и др.

Эффекты от реализации проекта как решение задачи по технологическому суверенитету страны

Разработаны, изготовлены и испытаны гибридные силовые модули первого поколения с использованием двух технологий преобразования электроэнергии для космических аппаратов по техническим требованиям ключевого партнера — АО «Решетнёв». Передовые технические характеристики модулей обеспечиваются их высокой удельной энергетической эффективностью и мощностью.

02

Впервые для ряда отечественных полупроводниковых приборов силовой электроники разработаны Spice-модели для создания электронных двойников энергопреобразующей аппаратуры космических и летательных аппаратов; (АО «Решетнёв», АО НПО «Наука Софт»).

03

Впервые в России предложена топология и технология изготовления мощных полевых транзисторов с воздушным каналом на базе новых полупроводниковых материалов. Транзисторы на базе предложенных технологий обладают уникальными частотными свойствами; (ИФП СО РАН, АО «НЗПП Восток», АО «Решетнёв»).

Эффекты от реализации проекта как решение задачи по технологическому суверенитету страны

Прорабатывается программа по разработке и созданию специализированного п/п преобразователя для ЭЗС. Впервые для электрозарядных станций будут созданы отечественный контроллер и п/п преобразователь. (Индустриальный партнёр АО НПП «Радиосвязь»).

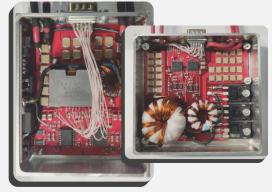
05

Полученные и опубликованные результаты продвинули понимание профессиональным сообществом необходимости развития электрических сетей с распределённой малой генерацией, объектами на ее основе при децентрализованном мультиагентном управлении режимами для решения задач надёжности и экономической эффективности энергоснабжения потребителей в современных условиях, особенно в части живучести систем энергоснабжения.

06

Достигнута договорённость ЗАО «НПП «Планета-Аргал» по проведению работ по оценке возможности производства СВЧ усилителей на их технологической базе в твердотельном исполнении, что позволит осуществить импортозамещение продукции единственного производителя — шведской компании «Low Noise Factory»

07


Проектирование беспилотных летательных аппаратов со стопроцентной локализацией отечественных разработок в составе комплектующих

Планы реализации проекта на 2024 г.

Планы на 2023–2024 гг. проекта «Дизайн-центр проектирования и производства гибридных микросборок энергопреобразующей аппаратуры для аэрокосмического применения»

Испытания опытных образцов ГМС второго поколения для КА и ЛА - 2024-2025 гг.

Г0 0

Разработка электронного двойника опытных образцов ГМС второго поколения для КА и проведение исследований - 2024-2027 г.

ш \mathbf{z}

ш

5 0

0

Разработка технологии для изготовления ГМС поколения 3 с целью организации опытного производства - 2024 г.

Схема технологического маршрута поколения № 3

Планы реализации проекта на 2024 г.

- Разработка и создание линейки электрозарядных станций различной мощности с разработкой специализированного контроллера научным коллективом НГТУ и организацией его производства на предприятии
 АО НПП «Радиосвязь» г. Красноярск (2022–2024 гг.).
- Реализация проекта создания Минигрид жилмассива «Радуга Сибири»
 в Новосибирске совместно с ООО «Институт автоматизации энергосистем»
 по заказу ООО «Генерация Сибири», ООО «Энергосети Сибири»
- Коммерциализация разработанного симулятора Минигрид (ПО) и продажи лицензий вузам, центрам переподготовки специалистов, предприятиям, создающим и использующим локальные системы энергоснабжения.
- Переход к новым номенклатурам разработок Центром Мехатроники для добывающего сектора и встраивание мощностей участка опытного производства Центра в цепочку поставок изделий для добывающих предприятий.
- Переход к производству опытных партий как самих БПЛА, так и электро-двигателей для БПЛА. Запуск реализации мелкой серии продукции.
- Изготовление экспериментальной энергетической установки для беспилотного воздушного судна «Сарма».

Силовая интеллектуальная электроника– основа эффективной энергетики.

СТРАТЕГИЧЕСКИЙ ПРОЕКТ «СИЛОВАЯ ЭЛЕКТРОНИКА И ИНТЕЛЛЕКТУАЛЬНАЯ ЭНЕРГЕТИКА» СП-1

Руководитель проекта проф. Харитонов С.А. Итоговый отчёт за 2023 г.

