Федеральное государственное бюджетное образовательное учреждение высшего образования «Новосибирский государственный технический университет»

"УТВЕРЖДАЮ" Зав. отделом подготовки кадров

высшей квалификации

д.т.н. Драгунов В.П.

ПРОГРАММА

кандидатского экзамена по специальности

05.09.03 «Электротехнические комплексы и системы»

по техническим наукам

Программы-минимумы кандидатских экзаменов по всем дисциплинам утверждены приказом Минобрнауки России от 8 октября 2007 г. № 274 (зарегистрирован Минюстом России 19 октября 2007 г., регистрационный № 10363)

Программа обсуждена и утверждена на совете факультета мехатроники и автоматизации, протокол № 1 от 18.01.2017

Программу разработал:

к.т.н. Котин Д. А. профессор, д.т.н. Щуров Н. И. Заведующий кафедрой:

профессор, д.т.н. Аносов В. Н. профессор, д.т.н. Харитонов С. А. профессор, д.т.н. Щуров Н. И.

Ответственный за образовательную программу:

профессор, д.т.н. Аносов В. Н.

Рецензент:

профессор, д.т.н. Аносов В. Н.

2

ОСНОВНАЯ ПРОГРАММА

кандидатского экзамена по специальности

05.09.03 «Электротехнические комплексы и системы»

1. Введение

Программа составлена с опорой на следующие дисциплины профиля «Электротехнические комплексы и системы», связанные с особенностями анализа общих закономерностей преобразования, накопления, передачи и использования электрической энергии и электротехнической информации, принципами и средствами управления действующих или создаваемых электротехнических комплексов и систем промышленного, транспортного, бытового и специального назначения.

2. Теория электропривода

- 2.1. Функции, выполняемые общепромышленным и тяговым приводом, и его обобщенные функциональные схемы. Характеристики электромеханического преобразователя энергии и его математическое описание в двигательном и тормозном режимах. Обобщенная электрическая машина как основной компонент электропривода. Электромеханические свойства двигателей постоянного тока, асинхронных, синхронных и шаговых двигателей. Механические устройства. Нагрузка двигателя. Сопряжение двигателя с рабочим механизмом (редукторы, муфты).
- 2.2. Математические модели и структурные схемы электромеханических систем с электродвигателями разных типов.
- 2.3. Установившиеся режимы работы электропривода. Частотный и спектральный анализ. Учет упругих звеньев и связей. Учет нелинейностей. Построение адекватных моделей с использованием компьютерных технологий.
- 2.4. Переходные процессы в электроприводах. Линейные и нелинейные системы, передаточные и переходные функции электропривода. Примеры формирования оптимальных переходных процессов при разгоне и торможении электропривода с учетом процессов в рабочем механизме.
- 2.5. Обобщенный алгоритм компьютерного моделирования линейных или нелинейных систем автоматизированного электропривода; представление и обработка результатов моделирования.
- 2.6. Регулирование координат электропривода. Характеристика систем электроприводов: управляемый преобразователь-двигатель постоянного тока, преобразователь частоты асинхронный двигатель, преобразователь частоты синхронный двигатель, системы с шаговыми двигателями, системы с линейными двигателями и сферы их применения. Основные характеристики приборных систем электроприводов.
- 2.7. Следящие электроприводы. Многодвигательные электромеханические системы. Тяговые электроприводы.
- 2.8. Выбор типа и мощности электродвигателя, обоснование структуры, типа и мощности преобразователя. Основные этапы эскизного и рабочего проектирования электропривода.

3. Автоматическое управление электроприводами

3.1. Основные функции и структуры автоматического управления электроприводами. Типовые, функциональные схемы и типовые системы, осуществляющие автоматический пуск,

стабилизацию скорости, реверс и остановку электродвигателей. Синтез систем с контактными и бесконтактными элементами. Принципы выбора элементной базы.

- 3.2. Общие вопросы теории замкнутых систем автоматического управления электроприводами (САУ) при заданном рабочем механизме.
- 3.3. Методы анализа и синтеза замкнутых, линейных и нелинейных, непрерывных и дискретных САУ. Применение методов вариационного исчисления и пакетов прикладных программ для ПЭВМ.
- 3.4. Системы управления электроприводами постоянного и переменного тока. Типовые структуры систем управления асинхронными и синхронными двигателями. Особенности построения систем управления асинхронными и синхронными двигателями. Особенности построения систем управления электроприводов с тиристорными преобразователями. Системы с машинами двойного питания. Структура управления специальным приводами (тяговые, крановые, муфтовые и т.п.). Управление электроприводами с линейными двигателями.
- 3.5. Управление электроприводами при наличии редуктора и упругой связи двигателя с механизмом. Стабилизирующие системы управления электроприводами. Защита от перегрузок и аварийных режимов.
- 3.6. Типовые узлы и типовые САУ, поддерживающие постоянство заданных переменных. Типовые узлы и типовые следящие САУ непрерывного и дискретного действия. Оптимальные и инвариантные САУ. Анализ и синтез следящих САУ с учетом стохастических воздействий. Цифровые САУ. Электроприводы в робототехнических комплексах и гибких автоматизированных производствах. Применение микропроцессоров и микроЭВМ для индивидуального и группового управления электроприводами технологических объектов и транспортных средств.
- 3.7. Адаптивные системы автоматического управления и принципы их управления. Алгоритмы адаптации в электроприводах.
- 3.8. Надежность и техническая диагностика электроприводов.

4. Теория и принципы работы комплексных узлов электрооборудования

- 4.1. Научные основы и принципы работы наиболее распространенных комплектных узлов электрооборудования (по отраслям). Преобразователи напряжения, в том числе: генераторы и электромашинные преобразователи, управляемые вентильные преобразователи постоянного и переменного тока в постоянный, инверторы, непосредственные преобразователи частоты переменного тока и др.
- 4.2. Основные принципы построения систем и комплектных узлов общепромышленного электрооборудования и электрооборудования подвижных объектов. Контакторно-резисторные и электронные узлы систем управления электрическим подвижным составом и их особенности.
- 4.3. Контактные и бесконтактные узлы электродвигателями постоянного и переменного тока, работающие в непрерывных, релейных и импульсных режимах. Особенности проектирования. Элементная база силовых цепей электрооборудования (контакторы, резисторы, силовые полупроводниковые приборы).

5. Электрооборудование для электроснабжения промышленных предприятий, транспорта и сельского хозяйства

5.1. Классификация источников, приемников и преобразователей электрической энергии. Электрические нагрузки и закономерности изменения их во времени (по отраслям).

Использование теории случайных процессов для представления основных параметров нагрузки. Основы теории прогнозирования и динамики потребления электрической энергии. Тяговые подстанции и их принципиальные особенности; типы тяговых подстанций электротранспорта.

- 5.2. Принципы расчета электрических сетей и систем электрооборудования.
- 5.3. Выбор систем и схем электроснабжения. Современные методы оптимизации систем электроснабжения, критерии оптимизации. Характерные схемы электроснабжения. Выбор напряжения в системах электроснабжения (по отраслям). Сокращение числа трансформации и выбор числа трансформации. Блуждающие токи и коррозия подземных сооружений. Защита от блуждающих токов.
- 5.4. Определение токов короткого замыкания и выбор электрических аппаратов защиты. Принципы автоматического повторного включения.
- 5.5. Качество электрической энергии. Влияние качества электроэнергии на потребление электроэнергии и на производительность механизмов и агрегатов (по отраслям). Электромагнитная совместимость приемников электрической энергии с питающей сетью.
- 5.6. Средства улучшения показателей качества электроэнергии. Компенсация реактивной мощности в электроприводах и системах электроснабжения.
- 5.7. Технико-экономические расчеты в системах электроснабжения (по отраслям) и использование для этих целей современных компьютерных технологий. Теория интерполяции и аппроксимации; методы приближения функций в расчетах по электротехническим комплексам и системам.
- 5.8. Теория надежности и техническая диагностика в электроснабжении и преобразовании электрической энергии (по отраслям). Теория малых выборок, и ее использование в практике расчетов.
- 5.9. Компенсация реактивной мощности. Основные направления развития компенсирующих устройств.
- 5.10. Заземление электроустановок, молниезащита промышленных, транспортных и сельскохозяйственных сооружений, жилых и культурно-бытовых зданий.
- 5.11. Допустимые перегрузки элементов преобразовательных подстанций в системах электроснабжения; прогнозирование перегрузок.
- 5.12. Электрический баланс в системах электроснабжения городов, объектов сельского хозяйства, промышленных предприятий и подвижных объектов. Методика расчета потерь мощности в системах электроснабжения. Нормирование энергопотребления.

6. Основная литература

- 6.1. Бирюков В.В. Энергетические аспекты функционирования транспортных систем: [монография] / В.В. Бирюков. Новосибирск, 2014. 262, [1] с.: ил., табл.. Режим доступа: http://elibrary.nstu.ru/source?bib_id=vtls000212638. Парал. тит. л. и огл. англ..
- 6.2. Жуловян В.В. Основы электромеханического преобразования энергии: [учебник] / В.В. Жуловян. Новосибирск, 2014. 425, [1] с.: ил.. Режим доступа: http://elibrary.nstu.ru/source?bib_id=vtls000214038.
- 6.3. Сопов В.И. Системы электроснабжения электрического транспорта на постоянном токе: [учебник для вузов по направлению подготовки 140400 "Энергетика и электротехника" модуль

- "Электротехника"] / В.И. Сопов, Н.И. Щуров. Новосибирск, 2013. 727 с.: ил., табл.. Режим доступа: http://elibrary.nstu.ru/source?bib id=vtls000176648.
- 6.4. Шеин А.Б. Методы проектирования электронных устройств: научное пособие / А.Б. Шеин, Н.М. Лазарева. Москва, 2011. 455 с.: ил., табл.
- 6.5. Шандров Б.В. Технические средства автоматизации: учебник / Б.В. Шандров, А.Д. Чудаков. Москва, 2010. 360, [1] с.: ил.
- 6.6. Евдокимов С.А. Структурный синтез многофазных вентильных преобразователей / С.А. Евдокимов, Н.И. Щуров. Новосибирск, 2010. 422 с.: ил.. Тит. л. также англ..
- 6.7. Бирюков В.В. Энергосбережение на электрическом транспорте: монография / В.В. Бирюков; Иркут. гос. техн. ун-т. Иркутск, 2009. 243 с.: ил., табл.. 40-летию каф. "Электрический транспорт" Новосиб. гос. техн. ун-та посвящается.
- 6.8. Розанов Ю.К. Силовая электроника: учебник для вузов / Ю.К. Розанов, М.В. Рябчицкий, А.А. Кваснюк. Москва, 2009. 631, [1] с.: ил.
- 6.9. Электромеханические и тепловые режимы асинхронных двигателей в системах частотного управления: учебное пособие / Р.Т. Шрейнер [и др.]; под ред. Р.Т. Шрейнера; Рос. гос. проф.-пед. ун-т, Урал. отд-ние Рос. Акад. образования. Екатеринбург, 2008. 360 с., [2] л. цв. портр.: ил., табл.
- 6.10. Соколовский Г.Г. Электроприводы переменного тока с частотным регулированием: учебник для вузов по специальности 140604 "Электропривод и автоматика промышленных установок и технологических комплексов" направления подготовки 140600 "Электротехника, электромеханика и электротехнологии" / Г.Г. Соколовский. М., 2006. 264, [1] с.: ил.
- 6.11. Основы электрического транспорта: учебник для вузов по специальности "Электрический транспорт" направления подготовки "Электротехника, электромеханика и электротехнологии" / [М.А. Слепцов и др.]; под общ. ред. М.А. Слепцова. М., 2006. 462, [1] с.: схемы.

7. Дополнительная литература

- 7.1. Силовая электроника в интеллектуальных электроэнергетических сетях: пер. с англ. под ред. Зиновьева Г.С. Новосибирск, 2009. 419 с.: ил.
- 7.2. Кочкин В.И. Традиционные и новые технологии управления режимами работы электрических сетей на основе устройств силовой электроники / В.И. Кочкин // Электротехника. 2009. № 6. С. 3-14.
- 7.3. Боченков Б.М. Классификация систем управления синхронными двигателями магнитоэлектрического возбуждения / Б.М. Боченков, М.В. Тюрин // Автоматизированные электромеханические системы: сб. науч. тр. Новосибирск: Изд-во НГТУ, 2008. С. 46–55.
- 7.4. Bochencov B.M. The optimization of the work of the electric drive alternating current on vector criterion quality / B. M. Bochencov, U. Filushov // The third international forum on strategic technology: proc. of IFOST 2008, Novosibirsk-Tomsk, Russia, 23-29 June 2008. 2008. P. 406-408.
- 7.5. Сукер К. Силовая электроника: руководство разработчика / Кит Сукер; пер. с англ. Рабодзея А.Н. М., 2007. 251 с.: ил.
- 7.6. Иванов А.В. Электромагнитная совместимость электротехнических комплексов подстанционного оборудования при внедрении мощных частотно-регулируемых электроприводов

- нового поколения / А.В. Иванов, В.В. Фоменко // Промышленная энергетика. 2007. \mathbb{N} 7. С. 41 44.
- 7.7. Рам Р.С. Основы силовой электроники / С. Рама Редди; пер. с англ. В.В. Масалова; под ред. Д.П. Приходько. М., 2006. 286, [1] с.: ил., цв. ил.
- 7.8. Николайчук О.И. Современные средства автоматизации: практические решения / О.И. Николайчук. М., 2006. 246, [1] с.: табл., ил.
- 7.9. Семенов Б.Ю. Силовая электроника: от простого к сложному / Б.Ю. Семенов. М., 2006. 415 с.: ил. + 1 CD-ROM. Загл. 1-го изд.: Силовая электроника для любителей и профессионалов (2001).
- 7.10. Paul C.R. Introduction to electromagnetic compatibility / Clayton R. Paul. Hoboken, N.J., 2006. XXI, 983 р.: ill. + 1 CD-ROM (4 3/4 in.). Пер. загл.: Введение в электромагнитную совместимость.

ДОПОЛНИТЕЛЬНАЯ ПРОГРАММА

кандидатского экзамена по специальности

05.09.03 «Электротехнические комплексы и системы»

по техническим наукам

1. Введение

Цель кандидатского экзамена - установить степень теоретической подготовки соискателя ученой степени по профилирующим направлениям специальности и, в особенности, глубину знаний в области, связанной с темой диссертации.

Из всего содержания дисциплин, изучаемых аспирантами, выбраны проблемы, включенные в четыре раздела:

- 1. Теория автоматического управления.
- 2. Электромеханическое преобразование энергии.
- 3. Системы автоматического управления электроприводами.
- 4. Теория электрической тяги.

Сформулированные в этих разделах вопросы являются основными и достаточными для характеристики общего уровня теоретической подготовки будущего кандидата технических наук по направлению подготовки 13.06.01 Электро- и теплотехника, профиль: Электротехнические комплексы и системы. Однако, в зависимости от темы диссертации, могут потребоваться углубленные знания - в какой-либо части, проблем, названных в тех разделах или не включенных в эти разделы. Поэтому разработана дополнительная программа кандидатского экзамена по направлению подготовки 13.06.01 Электро- и теплотехника, профиль: Электротехнические комплексы и системы.

Аспиранты обязаны периодически докладывать результаты своих разработок на теоретическом семинаре выпускающей кафедры и факультета и научно-технических конференциях различного уровня.

На экзамене аспиранту предлагается 2 вопроса: один из основной программы кандидатского экзамена, другой из дополнительной программы.

Кандидатский экзамен принимает комиссия, утвержденная проректором по науке НГТУ.

2. Теория автоматического управления

2.1. Математические модели линейных стационарных динамических систем.

Линеаризация уравнений САУ. Описание в пространстве состояний и форме «вход-выход». Преобразование Лапласа и операторные уравнения САУ. передаточные функции и матрицы, их свойства. Принцип суперпозиции. Преобразование Фурье и частотные характеристики САУ. Структурные схемы и правила их преобразования. Переходные и весовые функции и матрицы. Типовые динамические звенья и их характеристики.

2.2. Анализ и синтез линейных стационарных САУ.

Устойчивость, критерии устойчивости, запасы устойчивости. Прямые и косвенные методы исследования показателей качеств. Ошибки САУ в установившихся режимах. Управляемость и наблюдаемость.

Фундаментальные принципы автоматического регулирования, постановка задачи синтеза. Синтез корректирующих устройств методом ЛЧХ. Модальный метод синтеза, наблюдатели полного и пониженного порядков. Методика СПР и стандартные настройки Особенности анализа и синтеза САУ с запаздываниями.

2.3. Анализ нелинейных систем.

Метод фазовой плоскости. Метод гармонической линеаризации. Устойчивость нелинейных САУ и ее виды. Первый и второй методы А.М. Ляпунова. Абсолютная устойчивость, частотный критерий В.М. Попова. Скользящие режимы и их устойчивость.

2.4. Анализ и синтез линейных стационарных импульсных систем.

Амплитудно-импульсная модуляция, экстраполяторы. Описание систем с экстраполяторами нулевого порядка в форме «вход-выход» и в пространстве состояний. Дискретное преобразование Лапласа и зет - преобразование. Зет - передаточные функции и матрицы. Критерии устойчивости линейных импульсных САУ. Синтез систем с конечной длительностью переходных процессов. Особенности анализа и синтеза САУ с цифровым управлением.

2.5. Методы теории оптимального управления.

Постановка задачи оптимального управления динамическим объектом. Классическое вариационное исчисление, задачи о безусловном и условном экстремуме функционала, метод множителей Лагранжа, необходимые и достаточные условия экстремума. Принцип максимума Л.С. Понтрягина в задачах оптимального по быстродействию управления. Метод динамического программирования Беллмана и аналитическое конструирование оптимальных регуляторов.

Понятие о методах анализа и синтеза линейных стационарных непрерывных систем при случайных воздействиях.

3. Электромеханическое преобразование энергии

- 3.1. Математическая модель обобщенной электрической машины, преобразования переменных.
- 3.2. Модели двигателей постоянного тока, асинхронных и синхронных: уравнения в различных системах координат, структурные схемы, схемы замещения, векторные диаграммы, механические и электромеханические характеристики.
- 3.3. Математическое описание электромеханических систем с упругими связями на основе уравнений Лангранжа второго рода: двухмассовых и многомассовых, дифференциальные уравнения, структурные схемы, частотные характеристики.
- 3.4. Моделирование преобразователей электрической энергии: допущения, структурные схемы (генераторы, вентильные преобразователи). Методы учета дискретности и нелинейностей.
- 3.5. Энергетика электромеханических систем: потоки энергии и их распределение. Первая и вторая тепловые модели электрических машин. Методы расчета и выбора двигателей и преобразователей для различных режимов работы и способов регулирования.
- 3.6. Методы цифрового и аналогового моделирования электромеханических систем.

4. Системы автоматического управления электроприводами

4.1. Регулируемый электропривод постоянного тока.

Режимы работы и характеристики системы ВП-Д. Способы управления реверсивными вентильными преобразователями и согласования регулировочных характеристик комплектов. Способы ограничения тока. Методики синтеза систем автоматического регулирования тиристорных ЭП постоянного тока (СПР и по диаграммам качества). Тиристорные преобразователи в ЭП постоянного тока, способы формирования импульсной последовательности напряжений, электромеханические характеристики.

- 4.2. Следящие системы электропривода: основные показатели и структуры.
- 4.3. Регулируемый электропривод переменного тока.

Фазовое управление АД. Применение НПЧ, АИН, АИТ в частотно-регулируемом ЭП. Законы частотного регулирования скорости АД. Системы частотно-токового и векторного управления АД и СД. СПР скорости при частотно-токовом и векторном управлении.

4.4. Анализ и синтез двухмассовых электромеханических систем.

Математическое описание линейных и нелинейных ДЭМС с двигателем постоянного тока: уравнения, структурные схемы, передаточные функции. Построение систем стабилизации скорости или момента, а также следящего электропривода на базе ДЭМС.

4.5. Моделирование СУЭП на ЭВМ.

5. Теория электрической тяги.

- 5.1. Системы тока, применяемые в электрической тяге. Теория движения поезда, дифференциальная форма уравнений движения. Силы тяги и торможения поезда, законы сцепления. Характеристики тягового режима поезда. Характеристики тяговых двигателей постоянного тока различных систем возбуждения. Сравнение тяговых двигателей различных систем возбуждения по электрической и динамической устойчивости.
- 5.2. Регулирование скорости электротранспортного средства. Тягово-энергетические расчеты и методы определения энергопотребления электроподвижного состава.
- 5.3. Импульсные системы управления на транспорте.

Преобразователи напряжения, в том числе: генераторы, управляемые вентильные преобразователи постоянного и переменного тока в постоянный, инверторы, преобразователи частоты переменного тока и др.

5.4. Основные принципы построения систем и комплектных узлов электрооборудования подвижных объектов. Контакторно-резисторные и электронные узлы систем управления электрическим подвижным составом и их особенности.

Контактные и бесконтаткные узлы с электродвигателями постоянного и переменного тока, работающие в непрерывных, релейных и импульсных режимах. Особенности проектирования таких систем.

- 5.5. Электрические нагрузки на электротранспорте. Использование теории случайных процессов для их определения. Основы теории прогнозирования и динамики потребления электрической энергии. Тяговые подстанции и их принципиальные особенности. Принципы расчета электрических сетей и систем тягового электроснабжения. Характерные схемы электроснабжения. Блуждающие токи и коррозия подземных сооружений. Определение токов короткого замыкания и выбор электрических аппаратов.
- 5.6. Надежность, системы обслуживания и ремонта электроподвижного состава, устройств электроснабжения средств автоматики и телемеханики на транспорте. Математические модели, экспериментальная оценка надежности, резервирование.

Оценка эффективности функционирования систем электрического транспорта с учетом их надежности.

6. Основная литература

- 6.1. Бирюков В.В. Энергетические аспекты функционирования транспортных систем: [монография] / В.В. Бирюков. Новосибирск, 2014. 262, [1] с.: ил., табл.. Режим доступа: http://elibrary.nstu.ru/source?bib_id=vtls000212638. Парал. тит. л. и огл. англ..
- 6.2. Жуловян В.В. Основы электромеханического преобразования энергии: [учебник] / В.В. Жуловян. Новосибирск, 2014. 425, [1] с.: ил. Режим доступа: http://elibrary.nstu.ru/source?bib_id=vtls000214038.

- 6.3. Сопов В.И. Системы электроснабжения электрического транспорта на постоянном токе: [учебник для вузов по направлению подготовки 140400 "Энергетика и электротехника" модуль "Электротехника"] / В.И. Сопов, Н.И. Щуров. Новосибирск, 2013. 727 с.: ил., табл.. Режим доступа: http://elibrary.nstu.ru/source?bib_id=vtls000176648.
- 6.4. Панкратов В.В. Автоматическое управление электроприводами. Ч.1: [учебное пособие для ФМА по направлению 140400 "Электроэнергетика и электротехника" и профилю подготовки "Электропривод и автоматика промышленных установок и технологический комплексов"] / В.В. Панкратов; Новосиб. гос. техн. ун-т. Новосибирск, 2013. 198, [1] с.: ил. Режим доступа: http://elibrary.nstu.ru/source?bib_id=vtls000180765.
- 6.5. Панкратов В.В. Адаптивные алгоритмы бездатчикового векторного управления асинхронными электроприводами подъемно-транспортных механизмов: учебное пособие / В.В. Панкратов, Д.А. Котин; Новосиб. гос. техн. ун-т. Новосибирск, 2012. 141, [1] с.: ил. Режим доступа: http://elibrary.nstu.ru/source?bib id=vtls000178027.
- 6.6. Шеин А.Б. Методы проектирования электронных устройств: научное пособие / А.Б. Шеин, Н.М. Лазарева. Москва, 2011. 455 с.: ил., табл.
- 6.7. Шандров Б.В. Технические средства автоматизации: учебник / Б.В. Шандров, А.Д. Чудаков. Москва, 2010. 360, [1] с.: ил.
- 6.8. Евдокимов С.А. Структурный синтез многофазных вентильных преобразователей / С.А. Евдокимов, Н.И. Щуров. Новосибирск, 2010. 422 с.: ил... Тит. л. также англ..
- 6.9. Симаков Г.М. Автоматизированный электропривод: учебное пособие / Г.М. Симаков; Новосиб. гос. техн. ун-т. Новосибирск, 2010. 133, [1] с.: ил., табл. Режим доступа: http://www.ciu.nstu.ru/fulltext/textbooks/2010/10_simakov.pdf.
- 6.10. Бирюков В.В. Энергосбережение на электрическом транспорте: монография / В.В. Бирюков; Иркут. гос. техн. ун-т. Иркутск, 2009. 243 с.: ил., табл.. 40-летию каф. "Электрический транспорт" Новосиб. гос. техн. ун-та посвящается.
- 6.11. Розанов Ю.К. Силовая электроника: учебник для вузов / Ю.К. Розанов, М.В. Рябчицкий, А.А. Кваснюк. Москва, 2009. 631, [1] с.: ил.
- 6.12. Востриков А.С. Основы теории непрерывных и дискретных систем регулирования: учебное пособие /А.С. Востриков, Г.А. Французова, Е.Б. Гаврилов. Новосибирск: Изд-во НГТУ, 2008.-476 с.
- 6.13. Электромеханические и тепловые режимы асинхронных двигателей в системах частотного управления: учебное пособие / Р.Т. Шрейнер [и др.]; под ред. Р.Т. Шрейнера; Рос. гос. проф.-пед. ун-т, Урал. отд-ние Рос. Акад. образования. Екатеринбург, 2008. 360 с., [2] л. цв. портр.: ил., табл.
- 6.14. Симаков Γ .М. Системы автоматического управления электроприводов металлорежущих станков / Γ .М. Симаков. Новосибирск, 2007. 299 с.: схемы. Режим доступа: http://www.ciu.nstu.ru/fulltext/textbooks/2007/simakov.pdf.
- 6.15. Востриков А.С. Теория автоматического регулирования: учебное пособие /А.С. Востриков, Г.А. Французова. М.: Высшая школа, 2006. 365 с.
- 6.16. Соколовский Г.Г. Электроприводы переменного тока с частотным регулированием: учебник для вузов по специальности 140604 "Электропривод и автоматика промышленных установок и

технологических комплексов" направления подготовки 140600 "Электротехника, электромеханика и электротехнологии" / Г.Г. Соколовский. - М., 2006. - 264, [1] с.: ил.

6.17. Основы электрического транспорта: учебник для вузов по специальности "Электрический транспорт" направления подготовки "Электротехника, электромеханика и электротехнологии" / [М.А. Слепцов и др.]; под общ. ред. М.А. Слепцова. - М., 2006. - 462, [1] с.: схемы.

7. Дополнительная литература

- 7.1. Силовая электроника в интеллектуальных электроэнергетических сетях: пер. с англ. под ред. Зиновьева Г.С. Новосибирск, 2009. 419 с.: ил.
- 7.2. Кочкин В.И. Традиционные и новые технологии управления режимами работы электрических сетей на основе устройств силовой электроники / В.И. Кочкин // Электротехника. 2009. № 6. С. 3-14.
- 7.3. Боченков Б.М. Классификация систем управления синхронными двигателями магнитоэлектрического возбуждения / Б.М. Боченков, М.В. Тюрин // Автоматизированные электромеханические системы: сб. науч. тр. Новосибирск: Изд-во НГТУ, 2008. С. 46–55.
- 7.4. Bochencov B.M. The optimization of the work of the electric drive alternating current on vector criterion quality / B. M. Bochencov, U. Filushov // The third international forum on strategic technology: proc. of IFOST 2008, Novosibirsk-Tomsk, Russia, 23-29 June 2008. 2008. P. 406-408.
- 7.5. Сукер К. Силовая электроника: руководство разработчика / Кит Сукер; пер. с англ. Рабодзея А.Н. М., 2007. 251 с.: ил.
- 7.6. Белов М.П. Автоматизированный электропривод типовых производственных механизмов и технологических комплексов: [учебник для вузов по специальности "Электропривод и автоматика промышленных установок и технологических комплексов"] / М.П. Белов, В.А. Новиков, Л.Н. Рассудов. М., 2007. 574, [1] с.: ил.
- 7.7. Иванов А.В. Электромагнитная совместимость электротехнических комплексов подстанционного оборудования при внедрении мощных частотно-регулируемых электроприводов нового поколения / А.В. Иванов, В.В. Фоменко // Промышленная энергетика. 2007. № 7. С. 41 44.
- 7.8. Терехов В.М. Системы управления электроприводов: учебник для вузов по специальности "Электропривод и автоматика промышленных установок и технологических комплексов" направления подготовки дипломированных специалистов 140600 "Электротехника, электромеханика и электротехнологии" / В.М. Терехов, О.И. Осипов; под ред. В.М. Терехова. М., 2006. 299, [1] с.: ил., схемы.
- 7.9. Рам Р.С. Основы силовой электроники / С. Рама Редди; пер. с англ. В.В. Масалова; под ред. Д.П. Приходько. М., 2006. 286, [1] с.: ил., цв. ил.
- 7.10. Николайчук О.И. Современные средства автоматизации: практические решения / О.И. Николайчук. М., 2006. 246, [1] с.: табл., ил.
- 7.11. Семенов Б.Ю. Силовая электроника: от простого к сложному / Б.Ю. Семенов. М., 2006. 415 с.: ил. + 1 CD-ROM. Загл. 1-го изд.: Силовая электроника для любителей и профессионалов (2001).
- 7.12. Paul C.R. Introduction to electromagnetic compatibility / Clayton R. Paul. Hoboken, N.J., 2006. XXI, 983 р.: ill. + 1 CD-ROM (4 3/4 in.). Пер. загл.: Введение в электромагнитную совместимость.